These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 5158497)

  • 41. The oxidative degradation of glycine by a Pseudomonas.
    CAMPBELL LL
    J Biol Chem; 1955 Dec; 217(2):669-73. PubMed ID: 13271428
    [No Abstract]   [Full Text] [Related]  

  • 42. Metabolism of glycine by a pseudomonad.
    CALLELY AG; DAGLEY S
    Nature; 1959 Jun; 183():1793-4. PubMed ID: 13806996
    [No Abstract]   [Full Text] [Related]  

  • 43. Optimization of octanoic acid and sulfur donor concentrations for lipoic acid production by Pseudomonas reptilivora.
    Ji JH; Yu IS; Kim HJ; Oh DK
    Biotechnol Lett; 2008 Oct; 30(10):1825-8. PubMed ID: 18575810
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolism of imidazole by a pseudomonad.
    Oien HG; Wright LD
    J Bacteriol; 1971 Mar; 105(3):1229-31. PubMed ID: 5547986
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Copper and iron as determinant factors of antibiotic production by Pseudomonas reptilivora.
    Martinez-Molina E; Del Rio LA; Olivares J
    J Appl Bacteriol; 1976 Aug; 41(1):69-74. PubMed ID: 956067
    [No Abstract]   [Full Text] [Related]  

  • 46. On the production of alpha-ketoglutaric acid by non-proliferating cells of Pseudomonas reptilivora Caldwell et Ryerson from cultures of different age.
    Reekers A; Wikén TO
    Pathol Microbiol (Basel); 1965; 28(4):648-59. PubMed ID: 5836683
    [No Abstract]   [Full Text] [Related]  

  • 47. Comparative studies on glutamine, serine, and glycine metabolisms in ureotelic and uricotelic animals.
    Matsuda Y; Kuroda Y; Kobayashi K; Katunuma N
    J Biochem; 1973 Feb; 73(2):291-8. PubMed ID: 4145406
    [No Abstract]   [Full Text] [Related]  

  • 48. Growth of Pseudomonas reptilivora on N-methylglycines.
    Hall DE; Simpson IA; Crosbie GW
    Biochem J; 1971 Sep; 124(2):31P. PubMed ID: 5158499
    [No Abstract]   [Full Text] [Related]  

  • 49. Major pathways of glycine and serine catabolism in rat liver.
    Yoshida T; Kikuchi G
    Arch Biochem Biophys; 1970 Aug; 139(2):380-92. PubMed ID: 4395968
    [No Abstract]   [Full Text] [Related]  

  • 50. Physiological significance of glycine cleavage system in human liver as revealed by the study of a case of hyperglycinemia.
    Yoshida T; Kikuchi G
    Biochem Biophys Res Commun; 1969 May; 35(4):577-83. PubMed ID: 5788511
    [No Abstract]   [Full Text] [Related]  

  • 51. Synthesis of cell constituents from glycine by a Pseudomonas.
    DAGLEY S; TRUDGILL PW; CALLELY AG
    Biochem J; 1961 Dec; 81(3):623-31. PubMed ID: 13883076
    [No Abstract]   [Full Text] [Related]  

  • 52. Intermediatry metabolism of Diplococcus glycinophilus. I. Glycine cleavage and one-carbon interconversions.
    SAGERS RD; GUNSALUS IC
    J Bacteriol; 1961 Apr; 81(4):541-9. PubMed ID: 13745383
    [No Abstract]   [Full Text] [Related]  

  • 53. Growth of Pseudomonas reptilivora on glycine.
    Hall DE; Crosbie GW
    Biochem J; 1971 Sep; 124(2):30P. PubMed ID: 5158497
    [No Abstract]   [Full Text] [Related]  

  • 54.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 55.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 56.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 57.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 58.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]     [New Search]
    of 3.