These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 5159793)
1. [Properties of an asymmetrical carrier model for the transport of sugars by human erythrocytes]. Geck P Biochim Biophys Acta; 1971 Aug; 241(2):462-72. PubMed ID: 5159793 [No Abstract] [Full Text] [Related]
2. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell. Eilam Y; Stein WD Biochim Biophys Acta; 1972 Apr; 266(1):161-73. PubMed ID: 5041086 [No Abstract] [Full Text] [Related]
3. The "dimeriser" hypothesis for sugar permeation through red cell membrane: reinvestigation of original evidence. LeFevre PG Biochim Biophys Acta; 1966 Jul; 120(3):395-405. PubMed ID: 5966541 [No Abstract] [Full Text] [Related]
5. The kinetics of selective biological transport. IV. Assessment of three carrier systems using the erythrocyte-monosaccharide transport data. Miller DM Biophys J; 1968 Nov; 8(11):1339-52. PubMed ID: 5696216 [TBL] [Abstract][Full Text] [Related]
6. [Relationships between monosaccharide transport and Mg-Na-K-ATP-ase in human erythrocytes and ghosts]. Müller F; Dettmer D; Hartenstein H Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 90(2):259-64. PubMed ID: 4178876 [No Abstract] [Full Text] [Related]
7. The kinetics of selective biological transport. II. Equations for induced uphill transport of sugars in human erythrocytes. Miller DM Biophys J; 1965 Jul; 5(4):417-23. PubMed ID: 5861700 [TBL] [Abstract][Full Text] [Related]
8. A model for sugar transport across red cell membranes without carriers. Naftalin RJ Biochim Biophys Acta; 1970 Jul; 211(1):65-78. PubMed ID: 5470389 [No Abstract] [Full Text] [Related]
9. The kinetics of selective biological transport. V. Further data on the erythrocyte-monosaccharide transport system. Miller DM Biophys J; 1971 Nov; 11(11):915-23. PubMed ID: 5113002 [TBL] [Abstract][Full Text] [Related]
10. The kinetic parameters of the monosaccharide transfer system of the human erythrocyte. Levine M; Stein WD Biochim Biophys Acta; 1966 Sep; 127(1):179-93. PubMed ID: 5970872 [No Abstract] [Full Text] [Related]
11. The kinetics of selective biological transport. I. Determination of transport constants for sugar movements in human erythrocytes. Miller DM Biophys J; 1965 Jul; 5(4):407-15. PubMed ID: 5861699 [TBL] [Abstract][Full Text] [Related]
12. Human erythrocyte sugar transport. Kinetic evidence for an asymmetric carrier. Bloch R J Biol Chem; 1974 Jun; 249(11):3543-50. PubMed ID: 4831229 [No Abstract] [Full Text] [Related]
13. Two-carrier models for mediated transport. II. Glucose and galactose equilibrium exchange experiments in human erythrocytes as a test for several two-carrier models. Eilam Y Biochim Biophys Acta; 1975 Sep; 401(3):364-9. PubMed ID: 1182144 [TBL] [Abstract][Full Text] [Related]
14. A model for erythrocyte sugar transport based on substrate-conditioned "introversion" of binding sites. LeFevre PG J Membr Biol; 1973 Jan; 11(1):1-19. PubMed ID: 4705661 [No Abstract] [Full Text] [Related]
15. alpha- and beta-monosaccharide transport in human erythrocytes. Leitch JM; Carruthers A Am J Physiol Cell Physiol; 2009 Jan; 296(1):C151-61. PubMed ID: 18987250 [TBL] [Abstract][Full Text] [Related]
16. The kinetics of selective biological transport. 3. Erythrocyte-monosaccharide transport data. Miller DM Biophys J; 1968 Nov; 8(11):1329-38. PubMed ID: 5696215 [TBL] [Abstract][Full Text] [Related]
17. Evidence for a carrier conformational change associated with sugar transport in erythrocytes. Krupka RM Biochemistry; 1971 Mar; 10(7):1143-8. PubMed ID: 5553320 [No Abstract] [Full Text] [Related]
18. Kinetics of induced uphill transport of sugars in human erythrocytes. Levine M; Levine S J Theor Biol; 1969 Jul; 24(1):85-107. PubMed ID: 5818017 [No Abstract] [Full Text] [Related]
19. [On the linking effect of monosaccharides and ion transport in erythrocytes]. Müller F Folia Haematol Int Mag Klin Morphol Blutforsch; 1965; 83(2):131-7. PubMed ID: 4157984 [No Abstract] [Full Text] [Related]
20. Anomalous transport kinetics and the glucose carrier hypothesis. Regen DM; Tarpley HL Biochim Biophys Acta; 1974 Mar; 339(2):218-33. PubMed ID: 4827852 [No Abstract] [Full Text] [Related] [Next] [New Search]