These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 5159819)

  • 1. Elastic deformation in orthotropic oval vessels: a mathematical model.
    Melbin J; Noordergraaf A
    Bull Math Biophys; 1971 Dec; 33(4):497-519. PubMed ID: 5159819
    [No Abstract]   [Full Text] [Related]  

  • 2. Nonlinear anisotropic viscoelastic stresses in blood vessels.
    Cheung JB; Hsiao CC
    J Biomech; 1972 Nov; 5(6):607-19. PubMed ID: 4665897
    [No Abstract]   [Full Text] [Related]  

  • 3. Influence of longitudinal tethering on the tension in thick-walled blood vessels in equilibrium.
    Chu BM; Oka S
    Biorheology; 1973 Dec; 10(4):517-25. PubMed ID: 4783682
    [No Abstract]   [Full Text] [Related]  

  • 4. Memory functions as a tool for the description of tissue deformability.
    Mahrenholtz OH; Zimmerman RU
    Biorheology; 1984; 21(5):663-74. PubMed ID: 6518282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic deformation in orthotropic vessels: Theoretical and experimental results.
    Melbin J; Noordergraaf A
    Circ Res; 1971 Jun; 28(6):680-92. PubMed ID: 5087329
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanical equilibrium of blood vessel walls.
    Azuma T; Oka S
    Am J Physiol; 1971 Nov; 221(5):1310-8. PubMed ID: 5124273
    [No Abstract]   [Full Text] [Related]  

  • 7. [Analysis of the phases of deformation in soft biological tissues (author's transl)].
    Hartung C
    Basic Res Cardiol; 1973; 68(6):569-89. PubMed ID: 4778933
    [No Abstract]   [Full Text] [Related]  

  • 8. Compliance of flexible tubes.
    Kresch E
    J Biomech; 1979; 12(11):825-39. PubMed ID: 500741
    [No Abstract]   [Full Text] [Related]  

  • 9. Dynamic rheology of viscoelastic tubes.
    Collins R; Kivity Y
    Biorheology; 1978; 15(3-4):173-9. PubMed ID: 737320
    [No Abstract]   [Full Text] [Related]  

  • 10. Nonlinear elastic analysis of blood vessels.
    Wu SG; Lee GC; Tseng NT
    J Biomech Eng; 1984 Nov; 106(4):376-83. PubMed ID: 6513535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite element model of skin deformation. II. An experimental model of skin deformation.
    Larrabee WF; Sutton D
    Laryngoscope; 1986 Apr; 96(4):406-12. PubMed ID: 3959701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A contribution to the studies of elastic properties of vessels and to model simulation of pulsation flow in vascular tube (author's transl)].
    Klimes F
    Cas Lek Cesk; 1976 Sep; 115(35):1072-6. PubMed ID: 975178
    [No Abstract]   [Full Text] [Related]  

  • 13. Incremental formulations in vascular mechanics.
    Vaishnav RN; Vossoughi J
    J Biomech Eng; 1984 May; 106(2):105-11. PubMed ID: 6738013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of material constants and hydraulic strengthening of trabecular bone through an orthotropic structural model.
    Deligianni DD; Missirlis YF; Kafka V
    Biorheology; 1994; 31(3):245-57. PubMed ID: 8729485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The avian mandible as a structural girder.
    Bock WJ; Kummer B
    J Biomech; 1968 Jul; 1(2):89-96. PubMed ID: 16329296
    [No Abstract]   [Full Text] [Related]  

  • 16. [Mechanical behavior of vascular wall--analysis based on finite deformation theory and strain energy density function].
    Abé H; Ishikawa N
    Iyodenshi To Seitai Kogaku; 1985 Feb; 23(1):29-34. PubMed ID: 4010049
    [No Abstract]   [Full Text] [Related]  

  • 17. Analysis of wave propagation in orthotropic microtubules embedded within elastic medium by Pasternak model.
    Taj M; Zhang J
    J Mech Behav Biomed Mater; 2014 Feb; 30():300-5. PubMed ID: 24361934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A finite element model of skin deformation. III. The finite element model.
    Larrabee WF; Galt JA
    Laryngoscope; 1986 Apr; 96(4):413-9. PubMed ID: 3959702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscous flow past a collapsible channel as a model for self-excited oscillation of blood vessels.
    Tang C; Zhu L; Akingba G; Lu XY
    J Biomech; 2015 Jul; 48(10):1922-9. PubMed ID: 25911249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear stress field in blood vessels under the action of connective tissues.
    Misra JC; Roychoudhury K
    Blood Vessels; 1982; 19(1):19-29. PubMed ID: 7059684
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.