These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 5161312)

  • 41. The emerging role of GATA transcription factors in development and disease.
    Lentjes MH; Niessen HE; Akiyama Y; de Bruïne AP; Melotte V; van Engeland M
    Expert Rev Mol Med; 2016 Mar; 18():e3. PubMed ID: 26953528
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Myocyte enhancer factor 2D regulates ectoderm specification and adhesion properties of animal cap cells in the early Xenopus embryo.
    Katz Imberman S; Kolpakova A; Keren A; Bengal E
    FEBS J; 2015 Aug; 282(15):2930-47. PubMed ID: 26038288
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SOX17 links gut endoderm morphogenesis and germ layer segregation.
    Viotti M; Nowotschin S; Hadjantonakis AK
    Nat Cell Biol; 2014 Dec; 16(12):1146-56. PubMed ID: 25419850
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates.
    Snir M; Ofir R; Elias S; Frank D
    EMBO J; 2006 Aug; 25(15):3664-74. PubMed ID: 16858397
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulated Nodal signaling promotes differentiation of the definitive endoderm and mesoderm from ES cells.
    Takenaga M; Fukumoto M; Hori Y
    J Cell Sci; 2007 Jun; 120(Pt 12):2078-90. PubMed ID: 17535850
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural induction.
    Saxen L
    Int J Neurol; 1982-1983; 16-17():155-66. PubMed ID: 6765831
    [No Abstract]   [Full Text] [Related]  

  • 47. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos.
    Zhang J; Houston DW; King ML; Payne C; Wylie C; Heasman J
    Cell; 1998 Aug; 94(4):515-24. PubMed ID: 9727494
    [TBL] [Abstract][Full Text] [Related]  

  • 48. FGF-8 stimulates neuronal differentiation through FGFR-4a and interferes with mesoderm induction in Xenopus embryos.
    Hardcastle Z; Chalmers AD; Papalopulu N
    Curr Biol; 2000 Nov; 10(23):1511-4. PubMed ID: 11114518
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conversion of ectoderm into a neural fate by ATH-3, a vertebrate basic helix-loop-helix gene homologous to Drosophila proneural gene atonal.
    Takebayashi K; Takahashi S; Yokota C; Tsuda H; Nakanishi S; Asashima M; Kageyama R
    EMBO J; 1997 Jan; 16(2):384-95. PubMed ID: 9029157
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three developmental compartments involved in rib formation.
    Aoyama H; Mizutani-koseki S; Koseki H
    Int J Dev Biol; 2005; 49(2-3):325-33. PubMed ID: 15906248
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ontogeny of substrate pathways and the origin of the neural circuit pattern.
    Katz MJ; Lasek RJ; Nauta HJ
    Neuroscience; 1980; 5(5):821-33. PubMed ID: 6997774
    [No Abstract]   [Full Text] [Related]  

  • 52. Retinoic acid modifies mesodermal patterning in early Xenopus embryos.
    Ruiz i Altaba A; Jessell T
    Genes Dev; 1991 Feb; 5(2):175-87. PubMed ID: 1671660
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro studies on the morphogenesis and differentiation of the mesoderm subjacent to the apical ectodermal ridge of the embryonic chick limb-bud.
    Kosher RA; Savage MP; Chan SC
    J Embryol Exp Morphol; 1979 Apr; 50():75-97. PubMed ID: 458363
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Early limb development of Xenopus laevis.
    Tarin D; Sturdee AP
    J Embryol Exp Morphol; 1971 Oct; 26(2):169-79. PubMed ID: 5157347
    [No Abstract]   [Full Text] [Related]  

  • 55. A reinvestigation of some of the tissue movements involved in the formation of the neural tube and the eye/lens system of Triturus alpestris and Xenopus laevis.
    Lowery RS
    J Embryol Exp Morphol; 1966 Dec; 16(3):431-8. PubMed ID: 5962694
    [No Abstract]   [Full Text] [Related]  

  • 56. The homeobox gene PV.1 mediates specification of the prospective neural ectoderm in Xenopus embryos.
    Ault KT; Xu RH; Kung HF; Jamrich M
    Dev Biol; 1997 Dec; 192(1):162-71. PubMed ID: 9405105
    [TBL] [Abstract][Full Text] [Related]  

  • 57. xSyndecan-4 regulates gastrulation and neural tube closure in Xenopus embryos.
    Muñoz R; Larraín J
    ScientificWorldJournal; 2006 Oct; 6():1298-301. PubMed ID: 17041718
    [No Abstract]   [Full Text] [Related]  

  • 58. Churchill, a zinc finger transcriptional activator, regulates the transition between gastrulation and neurulation.
    Sheng G; dos Reis M; Stern CD
    Cell; 2003 Nov; 115(5):603-13. PubMed ID: 14651851
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neural induction.
    Phillips CR
    Methods Cell Biol; 1991; 36():329-46. PubMed ID: 1811142
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatial and temporal patterns of cell division during early Xenopus embryogenesis.
    Saka Y; Smith JC
    Dev Biol; 2001 Jan; 229(2):307-18. PubMed ID: 11150237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.