These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 5162576)

  • 41. A mathematical model of flow through a collapsible tube--I. Model and steady flow results.
    Morgan P; Parker KH
    J Biomech; 1989; 22(11-12):1263-70. PubMed ID: 2625427
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu: a multi-parametric sensitivity analysis.
    Sansalone V; Kaiser J; Naili S; Lemaire T
    Biomech Model Mechanobiol; 2013 Jun; 12(3):533-53. PubMed ID: 22869342
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An analysis of the unconfined compression of articular cartilage.
    Armstrong CG; Lai WM; Mow VC
    J Biomech Eng; 1984 May; 106(2):165-73. PubMed ID: 6738022
    [TBL] [Abstract][Full Text] [Related]  

  • 44. On the Newtonian behavior of bile.
    Rodkiewicz CM; Otto WJ
    J Biomech; 1979; 12(8):609-12. PubMed ID: 479213
    [No Abstract]   [Full Text] [Related]  

  • 45. An experimental study of pressure losses in pulsatile flows through rigid and pulsating stenosis.
    Rabinovitz R; Degani D; Gutfinger C; Milo S
    J Biomech Eng; 1984 Nov; 106(4):309-14. PubMed ID: 6513525
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transport phenomena in pulsating post-stenotic vortex flow in arteries. An interactive concept of fluid-dynamic, haemorheological and biochemical processes in white thrombus formation.
    Schmid-Schönbein H; Wurzinger LJ
    Nouv Rev Fr Hematol (1978); 1986; 28(5):257-67. PubMed ID: 3543838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mathematically modeling fluid flow and fluid shear stress in the canaliculi of a loaded osteon.
    Wu X; Wang N; Wang Z; Yu W; Wang Y; Guo Y; Chen W
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):149. PubMed ID: 28155688
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm.
    Lei Y; Chen M; Xiong G; Chen J
    J Biomech; 2015 Sep; 48(12):3312-22. PubMed ID: 26303169
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Boundary element modeling of electrokinetically driven fluid flow in two-dimensional microchannels.
    Hoyt JJ; Wolfer WG
    Electrophoresis; 1998 Oct; 19(14):2432-9. PubMed ID: 9820963
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Driving point impedance characteristics of the head.
    Stalnaker RL; Fogle JL
    J Biomech; 1971 Mar; 4(2):127-39. PubMed ID: 5000889
    [No Abstract]   [Full Text] [Related]  

  • 51. Laminar convergent flow in locally constricted tapered tubes with small angles of taper.
    Walawender WP; Tien C; Cerny LC
    Bibl Anat; 1969; 10():74-9. PubMed ID: 5407424
    [No Abstract]   [Full Text] [Related]  

  • 52. Peak airway pressure during high frequency jet ventilation: theory and measurement.
    Young JD; Dorrington KL
    Br J Anaesth; 1989 Nov; 63(5):541-7. PubMed ID: 2605071
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Modern poro-elastic biomechanical model of bone tissue. I. Biomechanical function of fluids in bone].
    Rogala P; Uklejewski R; Stryła W
    Chir Narzadow Ruchu Ortop Pol; 2002; 67(3):309-16. PubMed ID: 12238403
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the paths of fluid particles in an axisymmetrical aneurysm.
    Perktold K
    J Biomech; 1987; 20(3):311-7. PubMed ID: 3584155
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A rheological method for the quantification of platelet aggregation (PA) in vitro and its kinetics under defined flow conditions.
    Klose HJ; Rieger H; Schmid-Schönbein H
    Thromb Res; 1975 Aug; 7(2):261-72. PubMed ID: 1162647
    [No Abstract]   [Full Text] [Related]  

  • 56. Sinusoidal variation of wall shear stress in daughter tube through 45 deg branch model in laminar flow.
    Yamaguchi R; Kohtoh K
    J Biomech Eng; 1994 Feb; 116(1):119-26. PubMed ID: 8189707
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Peristaltic transport in circular cylindrical tubes.
    Li CH
    J Biomech; 1970 Oct; 3(5):513-23. PubMed ID: 5521561
    [No Abstract]   [Full Text] [Related]  

  • 58. A long wave approximation to peristaltic motion.
    Zien TF; Ostrach S
    J Biomech; 1970 Jan; 3(1):63-75. PubMed ID: 5521531
    [No Abstract]   [Full Text] [Related]  

  • 59. A microstructure model for the rheology of mammalian tendon.
    Lanir Y
    J Biomech Eng; 1980 Nov; 102(4):332-9. PubMed ID: 6965197
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fluid mechanics and biorheology.
    Copley AL
    Biorheology; 1990; 27(1):3-19. PubMed ID: 2193687
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.