These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 5162576)
61. Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: experimental modelling. Deplano V; Knapp Y; Bailly L; Bertrand E J Biomech; 2014 Apr; 47(6):1262-9. PubMed ID: 24612986 [TBL] [Abstract][Full Text] [Related]
62. Mathematical model of microbicidal flow dynamics and optimization of rheological properties for intra-vaginal drug delivery: Role of tissue mechanics and fluid rheology. Anwar MR; Camarda KV; Kieweg SL J Biomech; 2015 Jun; 48(9):1625-30. PubMed ID: 25798760 [TBL] [Abstract][Full Text] [Related]
64. A theory of fluid flow in compliant tubes. Barnard AC; Hunt WA; Timlake WP; Varley E Biophys J; 1966 Nov; 6(6):717-24. PubMed ID: 5972373 [TBL] [Abstract][Full Text] [Related]
65. The distribution of fluid forces on model arterial endothelium using computational fluid dynamics. Satcher RL; Bussolari SR; Gimbrone MA; Dewey CF J Biomech Eng; 1992 Aug; 114(3):309-16. PubMed ID: 1522724 [TBL] [Abstract][Full Text] [Related]
66. On empirical linear response models of arterial walls. Goodman FO; Imaeda K J Biomech; 1977; 10(5-6):283-8. PubMed ID: 893467 [No Abstract] [Full Text] [Related]
67. Bioelectrorheological model of the cell. 7. Cellular deformation in the presence of cytochalasin B. Pawlowski P; Poznanska A; Fikus M Biorheology; 1997; 34(3):171-93. PubMed ID: 9474262 [TBL] [Abstract][Full Text] [Related]
68. Modelling of the pathological bile flow in the duct with a calculus. Kuchumov AG; Nyashin YI; Samarcev VA; Gavrilov VA Acta Bioeng Biomech; 2013; 15(4):9-17. PubMed ID: 24479556 [TBL] [Abstract][Full Text] [Related]
69. Deformation of the arterial vasa vasorum at normal and hypertensive arterial pressure. Simon BR; Kobayashi AS; Wiederhielm CA; Strandness DE J Biomech; 1973 Jul; 6(4):349-59. PubMed ID: 4732935 [No Abstract] [Full Text] [Related]
71. Hemodynamic system analysis of intraarterial microaxial pumps in vitro and in vivo. Siess T; Meyns B; Spielvogel K; Reul H; Rau G; Flameng W Artif Organs; 1996 Jun; 20(6):650-61. PubMed ID: 8817972 [TBL] [Abstract][Full Text] [Related]
72. Finite element analysis of biological soft tissue surrounded by a deformable membrane that controls transmembrane flow. Hirabayashi S; Iwamoto M Theor Biol Med Model; 2018 Dec; 15(1):21. PubMed ID: 30348205 [TBL] [Abstract][Full Text] [Related]
73. Modeling the effect of axial bronchial tension on expiratory flow. Wilson TA J Appl Physiol Respir Environ Exerc Physiol; 1978 Nov; 45(5):659-65. PubMed ID: 730563 [TBL] [Abstract][Full Text] [Related]
74. Pressure and flow in the systemic arterial system. Wemple RR; Mockros LF J Biomech; 1972 Nov; 5(6):629-41. PubMed ID: 4665899 [No Abstract] [Full Text] [Related]
75. Flow through a collapsible tube. Experimental analysis and mathematical model. Katz AI; Chen Y; Moreno AH Biophys J; 1969 Oct; 9(10):1261-79. PubMed ID: 5824415 [TBL] [Abstract][Full Text] [Related]
76. An in-vivo measurement and analysis of viscoelastic properties of the spinal cord of cats. Chang GL; Hung TK; Feng WW J Biomech Eng; 1988 May; 110(2):115-22. PubMed ID: 3379933 [TBL] [Abstract][Full Text] [Related]
77. Nuclear magnetic resonance of convective dispersive flow. Harpen MD Med Phys; 1985; 12(3):317-20. PubMed ID: 4010636 [TBL] [Abstract][Full Text] [Related]
78. Pressure drop and flow rate measurements in a human aortic bifurcation cast for steady and pulsatile flow. Klanchar M; Tarbell JM J Biomech; 1989; 22(5):491-500. PubMed ID: 2777824 [TBL] [Abstract][Full Text] [Related]
79. Biofluidmechanics: quo vadimus? Bugliarello G Ann Biomed Eng; 1977 Sep; 5(3):209-47. PubMed ID: 921016 [No Abstract] [Full Text] [Related]
80. A one tube flow problem arising in physiology. Garner JB; Kellogg RB Bull Math Biol; 1980; 42(3):295-304. PubMed ID: 7378610 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]