These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 5162582)
1. Stability of the thin elastic shell model of the red blood cell. Danielson DA J Biomech; 1971 Dec; 4(6):611-7. PubMed ID: 5162582 [No Abstract] [Full Text] [Related]
2. Uniaxial loading of the red-cell membrane. Hochmuth RM; Mohandas N J Biomech; 1972 Sep; 5(5):501-9. PubMed ID: 4667274 [No Abstract] [Full Text] [Related]
3. A possible mechanism determining the stability of spiculated red blood cells. Iglic A J Biomech; 1997 Jan; 30(1):35-40. PubMed ID: 8970922 [TBL] [Abstract][Full Text] [Related]
4. Why do red blood cells have asymmetric shapes even in a symmetric flow? Kaoui B; Biros G; Misbah C Phys Rev Lett; 2009 Oct; 103(18):188101. PubMed ID: 19905834 [TBL] [Abstract][Full Text] [Related]
5. Static equilibrium configurations of a model red blood cell. Jenkins JT J Math Biol; 1977 May; 4(2):149-69. PubMed ID: 886227 [TBL] [Abstract][Full Text] [Related]
6. Viscoelasticity of the human erythrocyte membrane. Williams AR Biorheology; 1973 Sep; 10(3):313-9. PubMed ID: 4772004 [No Abstract] [Full Text] [Related]
7. New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. Evans EA Biophys J; 1973 Sep; 13(9):941-54. PubMed ID: 4733701 [TBL] [Abstract][Full Text] [Related]
8. Strain energy function of red blood cell membranes. Skalak R; Tozeren A; Zarda RP; Chien S Biophys J; 1973 Mar; 13(3):245-64. PubMed ID: 4697236 [TBL] [Abstract][Full Text] [Related]
9. The structure of a model membrane in relation to the viscoelastic properties of the red cell membrane. Rand RP J Gen Physiol; 1968 Jul; 52(1):173Suppl-86s. PubMed ID: 5742830 [No Abstract] [Full Text] [Related]
10. Measurement of the elastic modulus for red cell membrane using a fluid mechanical technique. Hochmuth RM; Mohandas N; Blackshear PL Biophys J; 1973 Aug; 13(8):747-62. PubMed ID: 4726877 [TBL] [Abstract][Full Text] [Related]
11. Simulation of shape changes and adhesion phenomena in an elastic model of erythrocytes. Leibler S; Maggs AC Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6433-5. PubMed ID: 2385601 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous manipulation and detection of living cell membrane dynamics. Gögler M; Betz T; Käs JA Opt Lett; 2007 Jul; 32(13):1893-5. PubMed ID: 17603605 [TBL] [Abstract][Full Text] [Related]
13. The red cell--a macromodel simulating the hypotonic-sphere isotonic-disc transformation. Brailsford JD; Bull BS J Theor Biol; 1973 May; 39(2):325-32. PubMed ID: 4728720 [No Abstract] [Full Text] [Related]
14. Shape memory of human red blood cells. Fischer TM Biophys J; 2004 May; 86(5):3304-13. PubMed ID: 15111443 [TBL] [Abstract][Full Text] [Related]
15. A computer model simulating the behavior of adult red blood cells. Red cell model. Zajicek G J Theor Biol; 1968 Apr; 19(1):51-66. PubMed ID: 5760591 [No Abstract] [Full Text] [Related]
16. Modelling the mechanical behavior of red blood cells. Skalak R Biorheology; 1973 Jun; 10(2):229-38. PubMed ID: 4728636 [No Abstract] [Full Text] [Related]
17. Characterisation of a dedicated mechanical model for red blood cells: numerical simulations of optical tweezers experiment. Sigüenza J; Mendez S; Nicoud F Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():28-9. PubMed ID: 25074148 [No Abstract] [Full Text] [Related]