These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
67 related articles for article (PubMed ID: 5162939)
1. [Hemodynamics during catheter-measurement of pressure difference in experiment]. Beránek I Z Exp Chir; 1971; 4(1):37-45. PubMed ID: 5162939 [No Abstract] [Full Text] [Related]
2. Calculation of blood velocity and pressure in stenosed renal artery considered as a Venturi tube. Collard M; Guey A Biomedicine; 1979 Jun; 30(2):108-12. PubMed ID: 476264 [TBL] [Abstract][Full Text] [Related]
3. [Effective perfusion area of renal artery stenosis in experiment]. Beránek I; Rosenbusch G Z Exp Chir; 1972; 5(1):28-39. PubMed ID: 4680966 [No Abstract] [Full Text] [Related]
5. [Possibilities of relative and absolute estimation on the degree of reduction of the perfusion caused by stenoses of a terminal artery of the type of the renal artery. Theoretical postulates]. Beránek I Cas Lek Cesk; 1974 Jul; 113(28):858-62. PubMed ID: 4849429 [No Abstract] [Full Text] [Related]
6. [Various problems in the relation between pressure differences, perfusion and magnitude of stenosis before and after the insertion of catheter into the arterial stenosis in catheterization for measurement of pressure differences]. Beránek I; Netusil M; Vrána M Cas Lek Cesk; 1971 Apr; 110(17):391-4. PubMed ID: 5576289 [No Abstract] [Full Text] [Related]
7. [Blood flow in a renal artery with a deformed vessel wall]. Kozhevnikov AA; Arabidze GG; Matveeva LS Biofizika; 1977; 22(2):318-22. PubMed ID: 861271 [TBL] [Abstract][Full Text] [Related]
8. [Possiblities of relative and absolute estimation on the degree of reduction of the perfusion caused by stenoses of the terminal artery of the type of the renal artery. Experimental study]. Beránek I Cas Lek Cesk; 1974 Jul; 113(29):891-6. PubMed ID: 4846253 [No Abstract] [Full Text] [Related]
9. Hydro- and hemodynamic effects of catheterization of vessels. V. Experimental and clinical catheterization of stenoses. Bjorno L; Pettersson H Acta Radiol Diagn (Stockh); 1977 Mar; 18(2):193-209. PubMed ID: 871086 [TBL] [Abstract][Full Text] [Related]
10. A computational study on the influence of catheter-delivered intravascular probes on blood flow in a coronary artery model. Torii R; Wood NB; Hughes AD; Thom SA; Aguado-Sierra J; Davies JE; Francis DP; Parker KH; Xu XY J Biomech; 2007; 40(11):2501-9. PubMed ID: 17258750 [TBL] [Abstract][Full Text] [Related]
11. The area of the pressure-flow loop for assessment of arterial stenosis: a new index. Ovadia-Blechman Z; Einav S; Zaretsky U; Castel D; Toledo E; Eldar M Technol Health Care; 2002; 10(1):39-56. PubMed ID: 11847447 [TBL] [Abstract][Full Text] [Related]
13. Biorheological aspects of blood flow through artery with mild stenosis : effects of peripheral layer. Shukla JB; Gupta SP; Parihar RS Biorheology; 1980; 17(5-6):403-10. PubMed ID: 7306691 [No Abstract] [Full Text] [Related]
14. Quantitation of the severity of arterial stenosis by pressure gradient measurement. Killen DA; Oh SU Am Surg; 1968 May; 34(5):341-9. PubMed ID: 5644344 [No Abstract] [Full Text] [Related]
16. Proceedings: In vitro analyses of wave propagation characteristics of pathological renal arteries. Christopher RA; Reich SB; Riley JC; Walker LA Biomed Sci Instrum; 1974 Apr; 10():71-7. PubMed ID: 4824242 [No Abstract] [Full Text] [Related]
17. The influences of stenosis on the downstream flow pattern in curved arteries. Liu B Med Eng Phys; 2007 Oct; 29(8):868-76. PubMed ID: 17081795 [TBL] [Abstract][Full Text] [Related]
18. Flow characteristics in models of arterial stenoses. I. Steady flow. Young DF; Tsai FY J Biomech; 1973 Jul; 6(4):395-410. PubMed ID: 4732939 [No Abstract] [Full Text] [Related]
19. [Experimental model of isolated arterial stenosis]. Sedlarik K; Fuhse J; Nguyen The Hiep Z Exp Chir; 1981 Dec; 14(6):391-6. PubMed ID: 7340264 [TBL] [Abstract][Full Text] [Related]