These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 5165680)

  • 21. Synthetic thyrotropin-releasing factor analogs. 3. Effect of replacement or modification of histidine residue on biological activity.
    Rivier J; Vale W; Monahan M; Ling N; Burgus R
    J Med Chem; 1972 May; 15(5):479-82. PubMed ID: 4624684
    [No Abstract]   [Full Text] [Related]  

  • 22. Kinetics of creatine phosphokinase and adenylate kinase. A two-dimensional NMR analysis.
    Kantor HL; Ferretti JA; Balaban RS
    Biochim Biophys Acta; 1984 Sep; 789(2):128-35. PubMed ID: 6089892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The active site of creatine kinase. Affinity labeling of cysteine 282 with N-(2,3-epoxypropyl)-N-amidinoglycine.
    Buechter DD; Medzihradszky KF; Burlingame AL; Kenyon GL
    J Biol Chem; 1992 Feb; 267(4):2173-8. PubMed ID: 1733925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The amino acid sequence of the peptide containing the thiol group of creatine kinase from normal and dystrophic chicken breast muscle. Comparison of some of the immunological properties of the antibodies developed in rabbits against these enzymes.
    Roy BP
    Biochem J; 1974 Oct; 143(1):171-9. PubMed ID: 4219281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and properties of creatine kinase from porcine skeletal muscle.
    Takasawa T; Shiokawa H
    J Biochem; 1981 Jul; 90(1):194-204. PubMed ID: 7287677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis and biological activity of 4'-thio analogs of the antibiotic toyocamycin.
    Bobek M; Whistler RL; Bloch AA
    J Med Chem; 1972 Feb; 15(2):168-71. PubMed ID: 4621465
    [No Abstract]   [Full Text] [Related]  

  • 27. Naphthyridines. IV. Preparation of anthyridines and pyrimido-[4,5-beta][1,8]naphthyridines from 2-amino-1,8-naphthyridines.
    Harper JF; Wibberley DG
    J Chem Soc Perkin 1; 1971; 18():2991-4. PubMed ID: 5165378
    [No Abstract]   [Full Text] [Related]  

  • 28. Changing the substrate specificity of creatine kinase from creatine to glycocyamine: evidence for a highly evolved active site.
    Jourden MJ; Clarke CN; Palmer AK; Barth EJ; Prada RC; Hale RN; Fraga D; Snider MJ; Edmiston PL
    Biochim Biophys Acta; 2007 Dec; 1774(12):1519-27. PubMed ID: 17976392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetic resonance study of the three-dimensional structure of creatine kinase-substrate complexes. Implications for substrate specificity and catalytic mechanism.
    McLaughlin AC; Leigh JS; Cohn M
    J Biol Chem; 1976 May; 251(9):2777-87. PubMed ID: 177421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron paramagnetic resonance and proton relaxation rate studies of spin-labeled creatine kinase and its complexes.
    Taylor JS; McLaughlin A; Cohn M
    J Biol Chem; 1971 Oct; 246(19):6029-36. PubMed ID: 4330064
    [No Abstract]   [Full Text] [Related]  

  • 31. Conformationally restricted creatine analogues and substrate specificity of rabbit muscle creatine kinase.
    Dietrich RF; Miller RB; Kenyon GL; Leyh TS; Reed GH
    Biochemistry; 1980 Jul; 19(14):3180-6. PubMed ID: 6250555
    [No Abstract]   [Full Text] [Related]  

  • 32. The "gamma component" of skeletal troponin. Evidence for its identity with muscle creatine kinase.
    Berson G
    J Biol Chem; 1976 Nov; 251(22):7001-3. PubMed ID: 825512
    [No Abstract]   [Full Text] [Related]  

  • 33. [Effect of phosphoenolpyruvate on creatine kinase activity in rabbit muscles].
    Chetverikova EP; Rozanova NA
    Ukr Biokhim Zh; 1977; 49(4):35-8. PubMed ID: 19862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Identification of the acyclic intermediate in nicotinic acid biosynthesis. II. Synthesis of diastereomers of epsilon-hydroxy-beta-carboxy-norleucine].
    Kuss E
    Hoppe Seylers Z Physiol Chem; 1967 Dec; 348(12):1589-95. PubMed ID: 5586905
    [No Abstract]   [Full Text] [Related]  

  • 35. Purines, pyrimidines, and imidazoles. XXXIX. Formation of some 5-aminoimidazole-4-carboxylic acid derivatives from ethyl -amino- -cyanoacetate.
    Robinson DH; Shaw G
    J Chem Soc Perkin 1; 1972; 13():1715-7. PubMed ID: 5066468
    [No Abstract]   [Full Text] [Related]  

  • 36. Amino-acids and peptides. XXXIV. Anchimerically assisted coupling reactions: the use of 2-pyridyl thiolesters.
    Lloyd K; Young GT
    J Chem Soc Perkin 1; 1971; 17():2890-6. PubMed ID: 5166756
    [No Abstract]   [Full Text] [Related]  

  • 37. Magnetic resonance studies of three forms of creatine kinase. Comparison of the properties of native, CH-S-blocked, and H2NCOCH-blocked enzymes.
    Markham GD; Reed GH
    J Biol Chem; 1977 Feb; 252(4):1197-201. PubMed ID: 838713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Binding of adenosine 5'-diphosphate to creatine kinase. An investigation using intermolecular nuclear Overhauser effect measurements.
    James TL
    Biochemistry; 1976 Oct; 15(21):4724-30. PubMed ID: 974086
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 31P NMR of enzyme-bound substrates of rabbit muscle creatine kinase. Equilibrium constants, interconversion rates, and NMR parameters of enzyme-bound complexes.
    Nageswara Rao BD; Cohn M
    J Biol Chem; 1981 Feb; 256(4):1716-21. PubMed ID: 7462219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanism for the production of multiple forms of MM creatine kinase.
    Perryman MB; Knell JD; Roberts R
    Experientia; 1984 Nov; 40(11):1275-7. PubMed ID: 6437858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.