These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 5167214)

  • 1. Growth factor requirements of ruminal cellulolytic bacteria isolated from microbial populations supplied diets with or without rapidly fermentable carbohydrate.
    Slyter LL; Weaver JM
    Appl Microbiol; 1971 Nov; 22(5):930-2. PubMed ID: 5167214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of starch and nitrogen sources on ruminal microorganisms of steers fed high fiber purified diets.
    Slyter LL; Kern DL; Weaver JM; Oltjen RR; Wilson RL
    J Nutr; 1971 Jul; 101(7):847-53. PubMed ID: 4997174
    [No Abstract]   [Full Text] [Related]  

  • 3. Nutritional requirements of the predominant rumen cellulolytic bacteria.
    Bryant MP
    Fed Proc; 1973 Jul; 32(7):1809-13. PubMed ID: 4718898
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose.
    Dehority BA; Tirabasso PA
    J Anim Sci; 1998 Nov; 76(11):2905-11. PubMed ID: 9856401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Starch and dextrose at 2 levels of rumen-degradable protein in iso-nitrogenous diets: Effects on lactation performance, ruminal measurements, methane emission, digestibility, and nitrogen balance of dairy cows.
    Sun F; Aguerre MJ; Wattiaux MA
    J Dairy Sci; 2019 Feb; 102(2):1281-1293. PubMed ID: 30591340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pectic enzymes in some pectinolytic rumen bacteria.
    Wojciechowicz M; Tomerska H
    Acta Microbiol Pol A; 1971; 3(1):57-61. PubMed ID: 5168995
    [No Abstract]   [Full Text] [Related]  

  • 7. Effect of acetohydroxamic acid on growth and volatile fatty acid production by rumen bacteria.
    Chan CC; Jones GA
    Can J Microbiol; 1973 Jan; 19(1):27-33. PubMed ID: 4734379
    [No Abstract]   [Full Text] [Related]  

  • 8. Growth factor requirements of Ruminococcus flavefaciens isolated from the rumen of cattle fed purified diets.
    Slyter LL; Weaver JM
    Appl Microbiol; 1969 May; 17(5):737-41. PubMed ID: 5785957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treponema bryantii sp. nov., a rumen spirochete that interacts with cellulolytic bacteria.
    Stanton TB; Canale-Parola E
    Arch Microbiol; 1980 Sep; 127(2):145-56. PubMed ID: 7425785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets.
    Varel VH; Dehority BA
    Appl Environ Microbiol; 1989 Jan; 55(1):148-53. PubMed ID: 2705767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of cellulolytic cillobacteria from the rumens of sheep fed teff (Eragrostis tef) hay diets.
    van Gylswyk NO; Hoffman JP
    J Gen Microbiol; 1970 Mar; 60(3):381-6. PubMed ID: 5487619
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of asynchronous nitrogen and energy supply on growth of ruminal bacteria in batch culture.
    Newbold JR; Rust SR
    J Anim Sci; 1992 Feb; 70(2):538-46. PubMed ID: 1548218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of replacing dietary starch with neutral detergent-soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC).
    Zhao XH; Liu CJ; Liu Y; Li CY; Yao JH
    J Anim Physiol Anim Nutr (Berl); 2013 Dec; 97(6):1161-9. PubMed ID: 23278844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diurnal variations in bacterial numbers and fluid parameters in ruminal contents of animals fed low- or high-forage diets.
    Leedle JA; Bryant MP; Hespell RB
    Appl Environ Microbiol; 1982 Aug; 44(2):402-12. PubMed ID: 6889837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between rumen amylolytic and lactate-utilizing bacteria in growth on starch.
    Marounek M; Bartos S
    J Appl Bacteriol; 1987 Sep; 63(3):233-8. PubMed ID: 3429358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1996 Mar; 62(3):1084-8. PubMed ID: 8975600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of fermentation of a purified diet and microbial growth in the rumen.
    Maeng WJ; Baldwin RL
    J Dairy Sci; 1976 Apr; 59(4):636-42. PubMed ID: 1262577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ruminal and postruminal infusion of starch hydrolysate or glucose on the microbial ecology of the gastrointestinal tract in growing steers.
    Van Kessel JS; Nedoluha PC; Williams-Campbell A; Baldwin RL; McLeod KR
    J Anim Sci; 2002 Nov; 80(11):3027-34. PubMed ID: 12462273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of urea, biuret and starch on amino acid patterns in ruminal bacteria and blood plasma and on nitrogen balance of steers fed high fiber purified diets.
    Slyter LL; Oltjen RR; Williams EE; Wilson RL
    J Nutr; 1971 Jul; 101(7):839-46. PubMed ID: 5092233
    [No Abstract]   [Full Text] [Related]  

  • 20. Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacterial populations.
    Leedle JA; Hespell RB
    Appl Environ Microbiol; 1980 Apr; 39(4):709-19. PubMed ID: 6769390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.