These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 5169442)

  • 1. Stimulation of hydrogenation of linoleate in Treponema (Borrelia) sp, strain B2-5 by reduced methyl viologen and by reduced benzyl viologen.
    Yokoyama MT; Davis CL
    Biochem J; 1971 Dec; 125(3):913-5. PubMed ID: 5169442
    [No Abstract]   [Full Text] [Related]  

  • 2. Hydrogenation of unsaturated fatty acids by Treponema (Borrelia) strain B 2 5, a rumen spirochete.
    Yokoyama MT; Davis CL
    J Bacteriol; 1971 Aug; 107(2):519-27. PubMed ID: 4329732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of the permeability of the cytoplasmic membrane of Escherichia coli to reduced and oxidized benzyl viologen and methyl viologen cations: complications in the use of viologens as redox mediators for membrane-bound enzymes.
    Jones RW; Gray TA; Garland PB
    Biochem Soc Trans; 1976; 4(4):671-3. PubMed ID: 793901
    [No Abstract]   [Full Text] [Related]  

  • 4. Hydrogenation of linoleic acid by a rumen spirochete.
    Sachan DS; Davis CL
    J Bacteriol; 1969 Apr; 98(1):300-1. PubMed ID: 5786426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of plant particles, bacteria and cell-free supernatant fractions of rumen contents in the hydrolysis of trilinolein and the subsequent hydrogenation of linoleic acid.
    Harfoot CG; Noble RC; Moore JH
    Antonie Van Leeuwenhoek; 1975; 41(4):533-42. PubMed ID: 1083209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyruvate oxidation by the Reiter strain of Treponema phagedenis.
    George HA; Smibert RM
    J Bacteriol; 1982 Dec; 152(3):1060-5. PubMed ID: 7142105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food particles as a site for biohydrogenation of unsaturated fatty acids in the rumen.
    Harfoot CG; Noble RC; Moore JH
    Biochem J; 1973 Apr; 132(4):829-32. PubMed ID: 4721616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane.
    Jones RW; Garland PB
    Biochem J; 1977 Apr; 164(1):199-211. PubMed ID: 328010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treponema zioleckii sp. nov., a novel fructan-utilizing species of rumen treponemes.
    Piknova M; Guczynska W; Miltko R; Javorsky P; Kasperowicz A; Michalowski T; Pristas P
    FEMS Microbiol Lett; 2008 Dec; 289(2):166-72. PubMed ID: 19054106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Desaturation and saturation of fatty acids by sheep rumen bacteria: optimal conditions and cofactor requirements.
    Sklan D; Budowski P
    J Dairy Sci; 1974 Jan; 57(1):56-60. PubMed ID: 4149299
    [No Abstract]   [Full Text] [Related]  

  • 11. Enzymatic hydrolysis of N-(alpha-methylbenzyl)linoleamide.
    Nagata A; Miyawaki H; Endo M; Nakatani H
    Chem Pharm Bull (Tokyo); 1971 Jun; 19(6):1276-7. PubMed ID: 5557572
    [No Abstract]   [Full Text] [Related]  

  • 12. Cholesterol esterification in vitro with DL-N-(alpha-methylbenzyl)-(1-14C)linoleamide.
    Abdulla YH; Adams CW
    Atherosclerosis; 1971; 13(1):61-5. PubMed ID: 5548455
    [No Abstract]   [Full Text] [Related]  

  • 13. The thermochemical characterization of sodium dithionite, flavin mononucleotide, flavin-adenine dinucleotide and methyl and benzyl viologens as low-potential reductants for biological systems.
    Watts GD; Burns A
    Biochem J; 1975 Oct; 152(1):33-7. PubMed ID: 1212225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of a rumen bacterium that hydrogenates oleic acid as well as linoleic acid and linolenic acid.
    White RW; Kemp P; Dawson RM
    Biochem J; 1970 Feb; 116(4):767-8. PubMed ID: 5435501
    [No Abstract]   [Full Text] [Related]  

  • 15. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species.
    Kemp P; White RW; Lander DJ
    J Gen Microbiol; 1975 Sep; 90(1):100-14. PubMed ID: 1236930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The non-enzymic reduction of nitrite by benzyl viologen (free-radical) in the presence and absence of ammonium sulphate.
    Hewitt EJ; James DM; Eaglesham AR
    Mol Cell Biochem; 1975 Feb; 6(2):101-5. PubMed ID: 235735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative aspects of fatty acid biohydrogenation, absorption and transfer into milk fat in the lactating goat, with special reference to the cis- and trans-isomers of octadecenoate and linoleate.
    Bickerstaffe R; Noakes DE; Annison EF
    Biochem J; 1972 Nov; 130(2):607-17. PubMed ID: 4664587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The nitrogen fixation system of photosynthetic bacteria. I. Preparation and properties of a cell-free extract from Chromatium.
    Winter HC; Arnon DI
    Biochim Biophys Acta; 1970 Mar; 197(2):170-9. PubMed ID: 5416107
    [No Abstract]   [Full Text] [Related]  

  • 19. Pathogenic variation in Ophiobolus graminis.
    Chambers SC
    Aust J Biol Sci; 1970 Oct; 23(5):1109-13. PubMed ID: 5486965
    [No Abstract]   [Full Text] [Related]  

  • 20. [Metabolic future of 14C-linoleic and palmitic acids in the growing rat. I. Oxidation and energy utilization].
    Pascaud M; Strouvé C
    Bull Soc Chim Biol (Paris); 1968; 50(3):569-77. PubMed ID: 5668591
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.