These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 517064)

  • 1. Bile acid transformation by anaerobic bacteria isolated from human feces and sewage by heat-treatment.
    Nakamura K
    Igaku Kenkyu; 1979 Apr; 49(1):58-68. PubMed ID: 517064
    [No Abstract]   [Full Text] [Related]  

  • 2. Biotransformation of bile acids by clostridia.
    Owen RW
    J Med Microbiol; 1985 Oct; 20(2):233-8. PubMed ID: 2864454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings: Faecal steroids and Clostridia in patients with familial polyposis.
    Drasar BS; Fernandez F; Heaton S; Hill MJ
    J Med Microbiol; 1975 May; 8(2):Pviii. PubMed ID: 1142412
    [No Abstract]   [Full Text] [Related]  

  • 4. Isolation and characterization of thirteen intestinal microorganisms capable of 7 alpha-dehydroxylating bile acids.
    Hirano S; Nakama R; Tamaki M; Masuda N; Oda H
    Appl Environ Microbiol; 1981 Mar; 41(3):737-45. PubMed ID: 7224633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The significance of the bacterial steroid degradation for the etiology of large bowel cancer. VIII. Transformation of cholic-, chenodeoxycholic-, and deoxycholic acid by lecithinase-lipase-negative clostridia].
    Edenharder R; Deser HJ
    Zentralbl Bakteriol Mikrobiol Hyg B; 1981; 174(1-2):91-104. PubMed ID: 7324622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by Clostridium baratii isolated from human feces.
    Lepercq P; Gérard P; Béguet F; Raibaud P; Grill JP; Relano P; Cayuela C; Juste C
    FEMS Microbiol Lett; 2004 Jun; 235(1):65-72. PubMed ID: 15158263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of levamisole, an anti-colon cancer drug, by human intestinal bacteria.
    Shu YZ; Kingston DG; Van Tassell RL; Wilkins TD
    Xenobiotica; 1991 Jun; 21(6):737-50. PubMed ID: 1949905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of anaerobic and aerobic wastewater treatment on faecal coliforms and antibiotic-resistant faecal coliforms.
    Morozzi G; Sportolari R; Caldini G; Cenci G; Morosi A
    Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1988 Jan; 185(4-5):340-9. PubMed ID: 3131985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of sulfated bile acids by human intestinal microflora.
    Pacini N; Albini E; Ferrari A; Zanchi R; Marca G; Bandiera T
    Arzneimittelforschung; 1987 Aug; 37(8):983-7. PubMed ID: 3675701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of fibre on bile acid metabolism by human faecal bacteria in batch and continuous culture.
    Fadden K; Hill MJ; Owen RW
    Eur J Cancer Prev; 1997 Apr; 6(2):175-94. PubMed ID: 9237069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid pre-treatment of sewage anaerobic sludge to increase hydrogen producing bacteria HPB: effectiveness and reproducibility.
    Tommasi T; Sassi G; Ruggeri B
    Water Sci Technol; 2008; 58(8):1623-8. PubMed ID: 19001717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Faecal bile-acids and clostridia in patients with cancer of the large bowel.
    Hill MJ; Drasar BS; Williams RE; Meade TW; Cox AG; Simpson JE; Morson BC
    Lancet; 1975 Mar; 1(7906):535-9. PubMed ID: 47015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen fermentation properties of undiluted cow dung.
    Yokoyama H; Waki M; Ogino A; Ohmori H; Tanaka Y
    J Biosci Bioeng; 2007 Jul; 104(1):82-5. PubMed ID: 17697988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composition of, and cholate transformation by, the predominant fecal flora of patients with colon or rectal cancer and matched controls.
    Edenharder R; Hammann R
    Prog Clin Biol Res; 1985; 181():305-9. PubMed ID: 4022990
    [No Abstract]   [Full Text] [Related]  

  • 15. Hydrolysis of conjugated bile acids by cell-free extracts from aerobic bacteria.
    Yesair DW; Himmelfarb P
    Appl Microbiol; 1970 Feb; 19(2):295-300. PubMed ID: 4314376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of hyodeoxycholate from beta-muricholate in gnotobiotic rats associated with Clostridium HDCA-1.
    Eyssen H; De Pauw G; Van Eldere J
    Prog Clin Biol Res; 1985; 181():103-6. PubMed ID: 4022963
    [No Abstract]   [Full Text] [Related]  

  • 17. Degradation of bile salts by human intestinal bacteria.
    Aries V; Crowther JS; Drasar BS; Hill MJ
    Gut; 1969 Jul; 10(7):575-6. PubMed ID: 5806939
    [No Abstract]   [Full Text] [Related]  

  • 18. The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge.
    Wang X; Hoefel D; Saint CP; Monis PT; Jin B
    J Appl Microbiol; 2007 Nov; 103(5):1415-23. PubMed ID: 17953552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The anaerobic side-chain cleavage of bile acids by Escherichia coli isolated from human faeces [proceedings].
    Tenneson ME; Owen RW; Mason AN
    Biochem Soc Trans; 1977; 5(6):1758-60. PubMed ID: 340302
    [No Abstract]   [Full Text] [Related]  

  • 20. Isolation of a bile salt sulfatase-producing Clostridium strain from rat intestinal microflora.
    Huijghebaert SM; Mertens JA; Eyssen HJ
    Appl Environ Microbiol; 1982 Jan; 43(1):185-92. PubMed ID: 7055372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.