These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 517107)

  • 1. A fluorescence energy transfer system for studying the functional properties of chromatin.
    Somogyi B; Szöllösi J; Rédai I; Damjanovich S
    Acta Biochim Biophys Acad Sci Hung; 1979; 14(1-2):25-9. PubMed ID: 517107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence energy transfer studies on normal and leukemic mouse lymphocytes.
    Somogyi B; Kertai P; Damjanovich S
    Acta Biochim Biophys Acad Sci Hung; 1980; 15(1):5-19. PubMed ID: 6935906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Use of ethidium for the cytochemical study of chromatin].
    Kolesnikov VA; Sondore OiU ; Fedoseeva GE; Zelenin AV
    Tsitologiia; 1979 Sep; 21(9):1029-35. PubMed ID: 92086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propidium iodide and the thiol-specific reagent DACM as a dye pair for fluorescence resonance energy transfer analysis: an application to mouse sperm chromatin.
    Bottiroli G; Croce AC; Pellicciari C; Ramponi R
    Cytometry; 1994 Feb; 15(2):106-16. PubMed ID: 8168398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer.
    Sebestyén Z; Nagy P; Horváth G; Vámosi G; Debets R; Gratama JW; Alexander DR; Szöllosi J
    Cytometry; 2002 Jul; 48(3):124-35. PubMed ID: 12116358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical identification and sorting of high metastatic variants from B16 melanoma tumor.
    Lessin SR; Abraham SR; Nicolini C
    Cytometry; 1982 May; 2(6):407-13. PubMed ID: 7075401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The functional and fluorescence properties of Escherichia coli RNA polymerase reacted with fluorescamine.
    Damjanovich S; Bähr W; Jovin TM
    Eur J Biochem; 1977 Feb; 72(3):559-69. PubMed ID: 320004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence double labeling and energy transfer in studying intracellular interactions.
    Damjanovich S; Somogyi B; Balazs M; Kertai P; Redai I
    Antibiot Chemother (1971); 1980; 28():142-6. PubMed ID: 6158287
    [No Abstract]   [Full Text] [Related]  

  • 9. Fluorescence energy transfer between fluorescein label and DNA intercalators to detect nucleic acids hybridization in homogeneous media.
    Talavera EM; Bermejo R; Crovetto L; Orte A; Alvarez-Pez JM
    Appl Spectrosc; 2003 Feb; 57(2):208-15. PubMed ID: 14610959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence energy transfer in one dimension: frequency-domain fluorescence study of DNA-fluorophore complexes.
    Maliwal BP; Kuśba J; Lakowicz JR
    Biopolymers; 1995 Feb; 35(2):245-55. PubMed ID: 7696569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence energy transfer on erythrocyte membranes.
    Fuchs HM; Hof M; Mudogo V; Lawaczeck R
    Gen Physiol Biophys; 1997 Mar; 16(1):15-28. PubMed ID: 9290940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface differences of normal and transformed cells as detected by a new, fluorescent labeling technique.
    Hawkes SP
    Prog Clin Biol Res; 1976; 9():149-58. PubMed ID: 1035972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell cycle analysis by combining the 5-bromodeoxyuridine/33258 Hoechst technique with DNA-specific ethidium bromide staining.
    Böhmer RM; Ellwart J
    Cytometry; 1981 Jul; 2(1):31-4. PubMed ID: 6168457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous bromodeoxyuridine labeling and bivariate ethidium bromide/Hoechst flow cytometry in cell kinetics.
    Poot M; Schmitt H; Seyschab H; Koehler J; Chen U; Kaempf U; Kubbies M; Schindler D; Rabinovitch PS; Hoehn H
    Cytometry; 1989 Mar; 10(2):222-6. PubMed ID: 2469558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of transformed cells using a fluorescent probe: the molecular basis for the differential reaction of fluorescamine with normal and transformed cells.
    Parry G; Blenis J; Hawkes SP
    Cytometry; 1982 Sep; 3(2):97-103. PubMed ID: 6291884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of receptor clustering by flow cytometric fluorescence anisotropy measurements.
    Bene L; Fulwyler MJ; Damjanovich S
    Cytometry; 2000 Aug; 40(4):292-306. PubMed ID: 10918280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study of 2.5S RNA of 1,4-alpha-glucan branching enzyme by fluorescent methods using ethidium bromide].
    Borisova OF; L'vova TN; Korneeva GA; Venkstern TV
    Mol Biol (Mosk); 1983; 17(6):1186-95. PubMed ID: 6197623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA double staining for a fluorescence energy transfer study of chromatin in liver cells.
    Bottiroli G; Croce AC; Gerzeli G; Barni S
    Cell Biophys; 1989 Dec; 15(3):249-63. PubMed ID: 2480184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of fluorescence resonance energy transfer techniques to the study of lectin-binding site distribution on Paramecium primaurelia (Protista, Ciliophora) cell surface.
    Locatelli D; Delmonte Corrado MU; Politi H; Bottiroli G
    Eur J Histochem; 1998; 42(3):205-12. PubMed ID: 9857246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of DNA hybridization using induced fluorescence resonance energy transfer.
    Howell WM
    Methods Mol Biol; 2006; 335():33-41. PubMed ID: 16785618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.