These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 5172305)

  • 21. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria.
    Kato S; Haruta S; Cui ZJ; Ishii M; Igarashi Y
    FEMS Microbiol Ecol; 2004 Dec; 51(1):133-42. PubMed ID: 16329862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellulolytic activity of aerobic soil actinomycetes.
    Lamot E; Voets JP
    Z Allg Mikrobiol; 1976; 19(5):345-51. PubMed ID: 969580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of isoxaben in soils and an aqueous system.
    Camper ND; Kim JH; Riley MB
    J Environ Sci Health B; 2001 Nov; 36(6):729-39. PubMed ID: 11757733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrogen transformation in soils. II. In sandy soil under horse-bean and sesame in a two years' rotation.
    Taha SM; Zayed MN; Saber MS; Badr-el-Din SM
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1973; 128(1):126-34. PubMed ID: 4353660
    [No Abstract]   [Full Text] [Related]  

  • 25. Nitrogen transformations in soils. I. In sandy soil under barley and peanut in a two years' rotation.
    Zayed MN; Taha SM; Saber MS; Badr-el-Din SM
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1973; 128(1):116-25. PubMed ID: 4353659
    [No Abstract]   [Full Text] [Related]  

  • 26. Cellulolytic and fermentative guilds in eutrophic soils of the Florida Everglades.
    Uz I; Ogram AV
    FEMS Microbiol Ecol; 2006 Sep; 57(3):396-408. PubMed ID: 16907754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellulose degradation in anaerobic environments.
    Leschine SB
    Annu Rev Microbiol; 1995; 49():399-426. PubMed ID: 8561466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Cellulose-decomposing microorganisms of irrigated soils in the southern Ukraine].
    Dul'gerov AN; Seraia LI
    Mikrobiol Zh; 1978; 40(1):7-12. PubMed ID: 634172
    [No Abstract]   [Full Text] [Related]  

  • 29. The effect of the clay content of some Dutch polder soils on the breakdown of organic material.
    van Schreven A
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 124(3):319-27. PubMed ID: 5535976
    [No Abstract]   [Full Text] [Related]  

  • 30. [Influence of nitrogen and potassium nutrition of wheat and oxygen supply of roots on bacterial numbers, respiration of roots and denitrification in the rhizosphere].
    Trolldenier G
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1971; 126(2):130-41. PubMed ID: 5172306
    [No Abstract]   [Full Text] [Related]  

  • 31. [Is the damage done to the soil microflora by seawater flodding the cause of persistent disturbances of the soil structure?].
    Harmsen GW
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 124(3):369-75. PubMed ID: 4918805
    [No Abstract]   [Full Text] [Related]  

  • 32. CO2 release as an index of biological activity of cultivated soils.
    Gołebiowska J; Pedziwilk Z
    Acta Microbiol Pol; 1984; 33(3-4):249-56. PubMed ID: 6083709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil.
    Elazhari-Ali A; Singh AK; Davenport RJ; Head IM; Werner D
    Environ Pollut; 2013 Feb; 173():125-32. PubMed ID: 23202642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soil microflora of the rhizosphere of plants from several habitats in the botanical garden in Poznań.
    Golebiowska J; Pedziwilk Z
    Acta Microbiol Pol B; 1975; 7(4):211-7. PubMed ID: 5857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The organisms and biological processes involved in asymbiotic nitrogen fixation in waterlogged soil amended with straw.
    Rice WA; Paul EA
    Can J Microbiol; 1972 Jun; 18(6):715-23. PubMed ID: 4556097
    [No Abstract]   [Full Text] [Related]  

  • 36. [Effect of increasing amount of nitrogen on the microbial transformation of straw in soil].
    Novák B
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 125(3):263-72. PubMed ID: 5537307
    [No Abstract]   [Full Text] [Related]  

  • 37. [Microbial formation of humus. 7. Communication. Effect of aerobic and anaerobic preincubation on humufication].
    Novák B
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1971; 126(3):286-97. PubMed ID: 5170898
    [No Abstract]   [Full Text] [Related]  

  • 38. A study of the rate of carbon dioxide output during mineralization of some organic materials in soil.
    Antoun GG; Jensen V
    Zentralbl Bakteriol Naturwiss; 1979; 134(5):373-80. PubMed ID: 120648
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies on the humification of organic matter in a red Rakar soil.
    Gaur AC; Sadasivam KV; Vimal OP; Mathur RS; Kavimandan SK
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1973; 128(1):149-61. PubMed ID: 4740797
    [No Abstract]   [Full Text] [Related]  

  • 40. Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils.
    Adviento-Borbe MA; Doran JW; Drijber RA; Dobermann A
    J Environ Qual; 2006; 35(6):1999-2010. PubMed ID: 17071868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.