These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 51847)

  • 21. Morphological changes accompanying actinomycin production in Streptomyces antibioticus.
    Collett MS; Jones GH
    J Ultrastruct Res; 1974 Mar; 46(3):452-65. PubMed ID: 4133251
    [No Abstract]   [Full Text] [Related]  

  • 22. Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli.
    Neidhardt FC; Bloch PL; Pedersen S; Reeh S
    J Bacteriol; 1977 Jan; 129(1):378-87. PubMed ID: 318645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of the aminoacylation of selected tRNA molecules by an estrogen-regulated factor on uterine ribosomes. Regulation of aminoacylation of tRNA by estrogens.
    Whelly SM; Barker KL
    Eur J Biochem; 1985 Jan; 146(2):245-53. PubMed ID: 3967659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ambiguity in a polypeptide-synthesizing extract from Saccharomyces cerevisiae.
    Schlanger G; Friedman SM
    J Bacteriol; 1973 Jul; 115(1):129-38. PubMed ID: 4577739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Initiation of protein synthesis by folate-sufficient and folate-deficient Streptococcus faecalis R. Biochemical and biophysical properties of methionine transfer ribonucleic acid.
    Samuel CE; Rabinowitz JC
    J Biol Chem; 1974 Feb; 249(4):1198-206. PubMed ID: 4205317
    [No Abstract]   [Full Text] [Related]  

  • 26. The effects of hyperphenylalaninaemia on the concentrations of aminoacyl-transfer ribonucleic acid in vivo. A mechanism for the inhibition of neural protein synthesis by phenylalanine.
    Hughes JV; Johnson TC
    Biochem J; 1977 Mar; 162(3):527-37. PubMed ID: 869903
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexizymes: their evolutionary history and the origin of catalytic function.
    Morimoto J; Hayashi Y; Iwasaki K; Suga H
    Acc Chem Res; 2011 Dec; 44(12):1359-68. PubMed ID: 21711008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of the biosynthesis of aminoacyl-transfer ribonucleic acid synthetases and of transfer ribonucleic acid in Escherichia coli. V. Mutants with increased levels of valyl-transfer ribonucleic acid synthetase.
    Baer M; Low KB; Söll D
    J Bacteriol; 1979 Jul; 139(1):165-75. PubMed ID: 378953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppression of temperature-sensitive aminoacyl-tRNA synthetase mutations by ribosomal mutations: a possible mechanism.
    Buckel P; Piepersberg W; Böck A
    Mol Gen Genet; 1976 Nov; 149(1):51-61. PubMed ID: 796671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of Escherichia coli glutaminyl-tRNA synthesis with noncognate tRNA's.
    Seno T; Nakamura A; Fukuhara S; Iwata K
    Nucleic Acids Res; 1978 May; 5(5):1561-70. PubMed ID: 351566
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antibacterial action of primaquine: effects in vitro on polypeptide synthesis and in vivo on ribosomes and ribosomal ribonucleic acid.
    Olenick JG
    Antimicrob Agents Chemother; 1975 Dec; 8(6):754-6. PubMed ID: 813574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homologs of aminoacyl-tRNA synthetases acylate carrier proteins and provide a link between ribosomal and nonribosomal peptide synthesis.
    Mocibob M; Ivic N; Bilokapic S; Maier T; Luic M; Ban N; Weygand-Durasevic I
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14585-90. PubMed ID: 20663952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roles of protein synthesis and tRNA aminoacylation in the regulation of intracellular protein breakdown in E. coli.
    Rafaeli-Eshkol D; Epstein D; Hershko A
    Biochem Biophys Res Commun; 1974 Dec; 61(3):899-905. PubMed ID: 4615711
    [No Abstract]   [Full Text] [Related]  

  • 34. Structural requirements for recognition of Escherichia coli initiator and non-initiator transfer ribonucleic acids by bacterial T factor.
    Schulman LH; Pelka H; Sundari RM
    J Biol Chem; 1974 Nov; 249(22):7102-10. PubMed ID: 4373457
    [No Abstract]   [Full Text] [Related]  

  • 35. Pseudoverification of mixed aminoacyl transfer ribonucleic acids. The generality of the process.
    Yarus M
    J Biol Chem; 1973 Oct; 248(19):6755-8. PubMed ID: 4583263
    [No Abstract]   [Full Text] [Related]  

  • 36. [Affinity modification of Escherichia coli ribosomes near the acceptor tRNA-binding site].
    Babkina GT; Karpova GG; Matasova NB
    Mol Biol (Mosk); 1984; 18(5):1287-96. PubMed ID: 6209548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patterns of E. coli leucine tRNA isoacceptors following bacteriophage MS2 infection.
    Di Natale P; Eilat D
    Nucleic Acids Res; 1976 Apr; 3(4):917-30. PubMed ID: 775446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of rat liver and Escherichia Coli cell-free systems in inhibition of polypeptide synthesis by deoxycholate.
    Igarashi K; Kurosawa R; Terada K; Takahashi K; Hirose S
    Biochim Biophys Acta; 1973 Mar; 299(2):331-6. PubMed ID: 4574764
    [No Abstract]   [Full Text] [Related]  

  • 39. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds.
    Jakubowski H; Pawelkiewicz J
    Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein synthesis in a cell-free system prepared from human placenta. II. pH 5 enzyme inefficiency due to defects in tRNA charging with resulting loss of elongation factor 1.
    Hubert C; Baliga BS; Villee CA; Munro HN
    Biochim Biophys Acta; 1974 Dec; 374(3):359-74. PubMed ID: 4611498
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.