These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 518875)
1. Physical studies of cell surface and cell membrane structure. Determination of phospholipid head group organization by deuterium and phosphorus nuclear magnetic resonance spectroscopy. Skarjune R; Oldfield E Biochemistry; 1979 Dec; 18(26):5903-9. PubMed ID: 518875 [TBL] [Abstract][Full Text] [Related]
2. Physical studies of cell surface and cell membrane structure. Deuterium nuclear magnetic resonance studies of N-palmitoylglucosylceramide (cerebroside) head group structure. Skarjune R; Oldfield E Biochemistry; 1982 Jun; 21(13):3154-60. PubMed ID: 7104317 [TBL] [Abstract][Full Text] [Related]
3. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Vist MR; Davis JH Biochemistry; 1990 Jan; 29(2):451-64. PubMed ID: 2302384 [TBL] [Abstract][Full Text] [Related]
4. Influence of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers. Brown MF; Seelig J Biochemistry; 1978 Jan; 17(2):381-4. PubMed ID: 619997 [TBL] [Abstract][Full Text] [Related]
5. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior. Weisz K; Gröbner G; Mayer C; Stohrer J; Kothe G Biochemistry; 1992 Feb; 31(4):1100-12. PubMed ID: 1734959 [TBL] [Abstract][Full Text] [Related]
6. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Bagatolli LA; Gratton E Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969 [TBL] [Abstract][Full Text] [Related]
7. Molecular areas of phospholipids as determined by 2H NMR spectroscopy. Comparison of phosphatidylethanolamines and phosphatidylcholines. Thurmond RL; Dodd SW; Brown MF Biophys J; 1991 Jan; 59(1):108-13. PubMed ID: 2015377 [TBL] [Abstract][Full Text] [Related]
8. The influence of cholesterol on head group mobility in phospholipid membranes. Shepherd JC; Büldt G Biochim Biophys Acta; 1979 Nov; 558(1):41-7. PubMed ID: 497197 [TBL] [Abstract][Full Text] [Related]
9. 31P and 2H NMR studies of structure and motion in bilayers of phosphatidylcholine and phosphatidylethanolamine. Ghosh R Biochemistry; 1988 Oct; 27(20):7750-8. PubMed ID: 3207706 [TBL] [Abstract][Full Text] [Related]
10. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures. Bagatolli LA; Gratton E Biophys J; 2000 Jan; 78(1):290-305. PubMed ID: 10620293 [TBL] [Abstract][Full Text] [Related]
11. Protein-lipid interactions. A nuclear magnetic resonance study of sarcoplasmic reticulum Ca2,Mg2+-ATPase, lipophilin, and proteolipid apoprotein-lecithin systems and a comparison with the effects of cholesterol. Rice DM; Meadows MD; Scheinman AO; Goñi FM; Gómez-Fernández JC; Moscarello MA; Chapman D; Oldfield E Biochemistry; 1979 Dec; 18(26):5893-903. PubMed ID: 160247 [TBL] [Abstract][Full Text] [Related]
12. Constrained Versus Free Cholesterol in DPPC Membranes: A Comparison of Chain Ordering Ability Using Deuterium NMR. Shaghaghi M; Keyvanloo A; Huang Z; Szoka FC; Thewalt JL Langmuir; 2017 Dec; 33(50):14405-14413. PubMed ID: 29120186 [TBL] [Abstract][Full Text] [Related]
13. Dynamical and temperature-dependent effects of lipid-protein interactions. Application of deuterium nuclear magnetic resonance and electron paramagnetic resonance spectroscopy to the same reconstitutions of cytochrome c oxidase. Paddy MR; Dahlquist FW; Davis JH; Bloom M Biochemistry; 1981 May; 20(11):3152-62. PubMed ID: 6264951 [TBL] [Abstract][Full Text] [Related]
14. A carbon-13 nuclear magnetic resonance spectroscopic study of inter-proton pair order parameters: a new approach to study order and dynamics in phospholipid membrane systems. Urbina JA; Moreno B; Arnold W; Taron CH; Orlean P; Oldfield E Biophys J; 1998 Sep; 75(3):1372-83. PubMed ID: 9726938 [TBL] [Abstract][Full Text] [Related]
15. 31P NMR spectra of rod outer segment and sarcoplasmic reticulum membranes show no evidence of immobilized components due to lipid-protein interactions. Ellena JF; Pates RD; Brown MF Biochemistry; 1986 Jul; 25(13):3742-8. PubMed ID: 3741833 [TBL] [Abstract][Full Text] [Related]
16. Carbon-13 and deuterium nuclear magnetic resonance study of the interaction of cholesterol with phosphatidylethanolamine. Blume A; Griffin RG Biochemistry; 1982 Nov; 21(24):6230-42. PubMed ID: 7150554 [TBL] [Abstract][Full Text] [Related]
17. Motions and interactions of phospholipid head groups at the membrane surface. 2. Simple alkyl head groups. Browning JL Biochemistry; 1981 Dec; 20(25):7123-33. PubMed ID: 7317372 [TBL] [Abstract][Full Text] [Related]
18. Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers. Paré C; Lafleur M; Liu F; Lewis RN; McElhaney RN Biochim Biophys Acta; 2001 Mar; 1511(1):60-73. PubMed ID: 11248205 [TBL] [Abstract][Full Text] [Related]