BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 518876)

  • 21. Identification of the residues responsible for the alkaline inhibition of the activity of Cu,Zn superoxide dismutase: a study of native and chemically modified enzymes.
    Polticelli F; O'Neill P; Costanzo S; Lania A; Rotilio G; Desideri A
    Arch Biochem Biophys; 1995 Aug; 321(1):123-6. PubMed ID: 7639510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactivation of bovine carboxypeptidase A by specific modification of arginine residues with phenylglyoxal.
    Ikenaga H; Takahashi K
    J Biochem; 1974 Mar; 75(3):455-62. PubMed ID: 4858054
    [No Abstract]   [Full Text] [Related]  

  • 23. Modification of arginine in the active sites of antibodies.
    Grossberg AL; Pressman D
    Biochemistry; 1968 Jan; 7(1):272-9. PubMed ID: 4098210
    [No Abstract]   [Full Text] [Related]  

  • 24. Studies of glutamate dehydrogenase. Identification of an amino group involved in the substrate binding.
    Rasched I; Jörnvall H; Sund H
    Eur J Biochem; 1974 Feb; 41(3):603-6. PubMed ID: 4856315
    [No Abstract]   [Full Text] [Related]  

  • 25. Histidine at the active site of superoxide dismutase.
    Forman HJ; Evans HJ; Hill RL; Fridovich I
    Biochemistry; 1973 Feb; 12(5):823-7. PubMed ID: 4346922
    [No Abstract]   [Full Text] [Related]  

  • 26. Alpha-carbon coordinates for bovine Cu,Zn superoxide dismutase.
    Richardson JS; Thomas KA; Richardson DC
    Biochem Biophys Res Commun; 1975 Apr; 63(4):986-92. PubMed ID: 1169067
    [No Abstract]   [Full Text] [Related]  

  • 27. Evolutionary relationships in superoxide dismutase.
    Bridgen J; Harris JI; Northrop F
    FEBS Lett; 1975 Jan; 49(3):392-5. PubMed ID: 1089067
    [No Abstract]   [Full Text] [Related]  

  • 28. Essentiality of the active-site arginine residue for the normal catalytic activity of Cu,Zn superoxide dismutase.
    Borders CL; Saunders JE; Blech DM; Fridovich I
    Biochem J; 1985 Sep; 230(3):771-6. PubMed ID: 4062877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The structure and function of ribonuclease T1. XI. Modification of the single arginine residue in ribonuclease T1 by phenylglyoxal and glyoxal.
    Takahashi K
    J Biochem; 1970 Nov; 68(5):659-64. PubMed ID: 5484446
    [No Abstract]   [Full Text] [Related]  

  • 30. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase.
    Ye M; English AM
    Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modification of arginines in bovine growth hormone.
    Wolfenstein-Todel C; Santomé JA
    Int J Pept Protein Res; 1983 Nov; 22(5):611-6. PubMed ID: 6317584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical modification of a functional arginine residue of rat liver glycine methyltransferase.
    Konishi K; Fujioka M
    Biochemistry; 1987 Dec; 26(25):8496-502. PubMed ID: 3442671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cobalt substitution studies on bovine erythrocyte superoxide dismutase: evidence for a novel cobalt-superoxide dismutase derivative.
    Salvato B; Beltramini M; Ricchelli F; Tallandini L
    Biochim Biophys Acta; 1989 Sep; 998(1):14-20. PubMed ID: 2790051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of human erythrocyte superoxide dismutase by 1H nuclear-magnetic-resonance spectroscopy.
    Hill HA; Lee WK; Bannister JV; Bannister WH
    Biochem J; 1980 Jan; 185(1):245-52. PubMed ID: 7378050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical modification of arginine residues of porcine muscle acylphosphatase.
    Tamura T; Mizuno Y; Shiokawa H
    Biochim Biophys Acta; 1986 Mar; 870(2):234-41. PubMed ID: 3006778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon-2 proton exchange at histidine-41 in bovine erythrocyte superoxide dismutase.
    Cass AE; Hill AO; Smith BE
    Biochem J; 1977 Sep; 165(3):587-9. PubMed ID: 921767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of x-rays on properties of superoxide dismutase.
    Symonyan MA; Nalbandyan RM
    Biochem Biophys Res Commun; 1979 Oct; 90(4):1207-13. PubMed ID: 229832
    [No Abstract]   [Full Text] [Related]  

  • 39. Studies on the reconstituion of bovine erythrocyte superoxide dismutase. 3. Evidence for a strong interdependence between Cu 2+ and Zn 2+ binding in the expression of the spectroscopic properties of the native protein and for a close proximity of the Zn 2+ and Cu 2+ sites.
    Fee JA
    Biochim Biophys Acta; 1973 Jan; 295(1):107-16. PubMed ID: 4346433
    [No Abstract]   [Full Text] [Related]  

  • 40. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme.
    Hodgson EK; Fridovich I
    Biochemistry; 1975 Dec; 14(24):5294-9. PubMed ID: 49
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.