These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 518921)
21. Molecular cloning of two cysteine proteinases from paw-paw (Carica papaya). McKee RA; Adams S; Matthews JA; Smith CJ; Smith H Biochem J; 1986 Jul; 237(1):105-10. PubMed ID: 3541893 [TBL] [Abstract][Full Text] [Related]
22. Primary structure of CC-III, the glycosylated cysteine proteinase from the latex of Carica candamarcensis Hook. Jaziri M; Kleinschmidt T; Walraevens V; Schnek AG; Looze Y Biol Chem Hoppe Seyler; 1994 Jun; 375(6):379-85. PubMed ID: 7980869 [TBL] [Abstract][Full Text] [Related]
23. The proteolytic activities of chymopapain, papain, and papaya proteinase III. Zucker S; Buttle DJ; Nicklin MJ; Barrett AJ Biochim Biophys Acta; 1985 Apr; 828(2):196-204. PubMed ID: 3919769 [TBL] [Abstract][Full Text] [Related]
24. Multiple forms of the asclepains. Cysteinyl proteases from milkweed. Lynn KR; Brockbank WJ; Clevette NA Biochim Biophys Acta; 1980 Mar; 612(1):119-25. PubMed ID: 6988008 [TBL] [Abstract][Full Text] [Related]
25. High-performance liquid chromatographic investigations on some enzymes of papaya latex. Calam DH; Davidson J; Harris R J Chromatogr; 1985 Jun; 326():103-11. PubMed ID: 4030939 [TBL] [Abstract][Full Text] [Related]
26. Antigenic determinant common to four kinds of thiol proteases of plant origin. Sasaki M; Kato T; Iida S J Biochem; 1973 Sep; 74(3):635-7. PubMed ID: 4127920 [No Abstract] [Full Text] [Related]
27. Purification and characterization of the cysteine proteinases in the latex of Vasconcellea spp. Kyndt T; Van Damme EJ; Van Beeumen J; Gheysen G FEBS J; 2007 Jan; 274(2):451-62. PubMed ID: 17229150 [TBL] [Abstract][Full Text] [Related]
29. Monoclonal antibodies to the two most basic papaya proteinases. Goodenough PW; Kilshaw PJ; McEwan F; Owen AJ Biosci Rep; 1986 Aug; 6(8):759-66. PubMed ID: 3545314 [TBL] [Abstract][Full Text] [Related]
30. Chymopapain A. Purification and investigation by covalent chromatography and characterization by two-protonic-state reactivity-probe kinetics, steady-state kinetics and resonance Raman spectroscopy of some dithioacyl derivatives. Baines BS; Brocklehurst K; Carey PR; Jarvis M; Salih E; Storer AC Biochem J; 1986 Jan; 233(1):119-29. PubMed ID: 3513753 [TBL] [Abstract][Full Text] [Related]
31. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Topham CM; Salih E; Frazao C; Kowlessur D; Overington JP; Thomas M; Brocklehurst SM; Patel M; Thomas EW; Brocklehurst K Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):79-92. PubMed ID: 1741760 [TBL] [Abstract][Full Text] [Related]
32. A re-evaluation of the nomenclature of the cysteine proteinases of Carica papaya and a rational basis for their identification. Brocklehurst K; Salih E Biochem J; 1983 Aug; 213(2):559-60. PubMed ID: 6351846 [No Abstract] [Full Text] [Related]
33. Characterization of papaya peptidase A as an enzyme of extreme basicity. Kaarsholm NC; Schack P Acta Chem Scand B; 1983; 37(7):607-11. PubMed ID: 6362305 [TBL] [Abstract][Full Text] [Related]
34. A marked gradation in active-centre properties in the cysteine proteinases revealed by neutral and anionic reactivity probes. Reactivity characteristics of the thiol groups of actinidin, ficin, papain and papaya peptidase A towards 4,4'-dipyridyl disulphide and 5,5'-dithiobis-(2-nitrobenzoate) dianion. Brocklehurst K; Mushiri SM; Patel G; Willenbrock F Biochem J; 1983 Mar; 209(3):873-9. PubMed ID: 6347181 [TBL] [Abstract][Full Text] [Related]
35. A biochemical comparison between latex from Carica candamarcensis and C. papaya. Bravo LM; Hermosilla J; Salas CE Braz J Med Biol Res; 1994 Dec; 27(12):2831-42. PubMed ID: 7550003 [TBL] [Abstract][Full Text] [Related]
36. Circular dichroism of cysteine proteinases from papaya latex. Evidence of differences in the folding of their polypeptide chains. Solís-Mendiola S; Arroyo-Reyna A; Hernández-Arana A Biochim Biophys Acta; 1992 Feb; 1118(3):288-92. PubMed ID: 1737051 [TBL] [Abstract][Full Text] [Related]
37. Isolation of highly active papaya peptidases A and B from commercial chymopapain. Polgár L Biochim Biophys Acta; 1981 Apr; 658(2):262-9. PubMed ID: 7018581 [TBL] [Abstract][Full Text] [Related]
38. Structural studies on stem bromelain. Cyanogen bromide cleavage and amino acid sequence of carboxyl-terminal half of the molecule. Goto K; Takahashi N; Murachi T Int J Pept Protein Res; 1980 Apr; 15(4):335-41. PubMed ID: 7419361 [TBL] [Abstract][Full Text] [Related]
39. The action of papain and bromelain on the uterus. Part IV. The effects of papain and bromelain on the internal os and uterine cornua. HUNTER RG; HENRY GW; CIVIN WH; HEINICKE RM Am J Obstet Gynecol; 1960 Mar; 79():428-31. PubMed ID: 14405468 [No Abstract] [Full Text] [Related]
40. Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. El Moussaoui A; Nijs M; Paul C; Wintjens R; Vincentelli J; Azarkan M; Looze Y Cell Mol Life Sci; 2001 Apr; 58(4):556-70. PubMed ID: 11361091 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]