These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 519523)

  • 41. Free energy potential for aggregation of erythrocytes and phosphatidylcholine/phosphatidylserine vesicles in Dextran (36,500 MW) solutions and in plasma.
    Evans E; Kukan B
    Biophys J; 1983 Nov; 44(2):255-60. PubMed ID: 6197103
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of plasma proteins on erythrocyte aggregation in three mammalian species.
    Spengler MI; Rasia M
    Vet Res Commun; 2001 Oct; 25(7):591-9. PubMed ID: 11583382
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The in Vitro Effect of Polyvinylpyrrolidone and Citrate Coated Silver Nanoparticles on Erythrocytic Oxidative Damage and Eryptosis.
    Ferdous Z; Beegam S; Tariq S; Ali BH; Nemmar A
    Cell Physiol Biochem; 2018; 49(4):1577-1588. PubMed ID: 30223265
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantification of depletion-induced adhesion of red blood cells.
    Steffen P; Verdier C; Wagner C
    Phys Rev Lett; 2013 Jan; 110(1):018102. PubMed ID: 23383842
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of dextran 500 on radial migration of erythrocytes in postcapillary venules at low flow rates.
    Kim S; Ong PK; Johnson PC
    Mol Cell Biomech; 2009 Jun; 6(2):83-91. PubMed ID: 19496256
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows.
    Brust M; Aouane O; ThiƩbaud M; Flormann D; Verdier C; Kaestner L; Laschke MW; Selmi H; Benyoussef A; Podgorski T; Coupier G; Misbah C; Wagner C
    Sci Rep; 2014 Mar; 4():4348. PubMed ID: 24614613
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Normalizing effect of low molecular weight dextran fractions on the reduced suspension stability of human erythrocytes in vitro.
    Richter W
    Acta Chir Scand; 1966; 131(1):1-8. PubMed ID: 5922469
    [No Abstract]   [Full Text] [Related]  

  • 48. A new laser photometric technique for the measurement of erythrocyte aggregation and sedimentation kinetics.
    Muralidharan E; Tateishi N; Maeda N
    Biorheology; 1994; 31(3):277-85. PubMed ID: 8729487
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism of erythrocyte aggregate formation in presence of magnetic field and dextrans as analyzed by laser light scattering.
    Singh M; Muralidharan E
    Biorheology; 1988; 25(1-2):237-44. PubMed ID: 2461747
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinetics of linear rouleaux formation studied by visual monitoring of red cell dynamic organization.
    Barshtein G; Wajnblum D; Yedgar S
    Biophys J; 2000 May; 78(5):2470-4. PubMed ID: 10777743
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The evaluation of the screen filtration pressure as a method for the determination of the influence of various colloids in causing red cell and platelet aggregation.
    Nuriel EH; Bicher HI; Van-der-Lijn E
    Bibl Anat; 1969; 10():524-7. PubMed ID: 5407410
    [No Abstract]   [Full Text] [Related]  

  • 52. Segregation into separate rouleaux of erythrocytes from different species. Evidence against the agglomerin hypothesis of rouleaux formation.
    Forsdyke DR; Ford PM
    Biochem J; 1983 Jul; 214(1):257-60. PubMed ID: 6412694
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sickle discocytes form more rouleaux in vitro than normal erythrocytes.
    Obiefuna PC; Photiades DP
    J Trop Med Hyg; 1990 Jun; 93(3):210-4. PubMed ID: 2348499
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Theoretical models of rouleau formation and disaggregation.
    Skalak R; Chien S
    Ann N Y Acad Sci; 1983; 416():138-48. PubMed ID: 6587806
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simultaneous influence of erythrocyte deformability and macromolecules in the medium on erythrocyte aggregation: a kinetic study by a laser scattering technique.
    Muralidharan E; Tateishi N; Maeda N
    Biochim Biophys Acta; 1994 Sep; 1194(2):255-63. PubMed ID: 7522564
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of shear rate on rouleau formation in simple shear flow.
    Murata T; Secomb TW
    Biorheology; 1988; 25(1-2):113-22. PubMed ID: 3196807
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of ultrasound on agglutination and aggregation of human erythrocytes in vitro.
    Pohl EE; Rosenfeld EH; Pohl P; Millner R
    Ultrasound Med Biol; 1995; 21(5):711-9. PubMed ID: 8525562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The equilibrium size distribution of rouleaux.
    Perelson AS; Wiegel FW
    Biophys J; 1982 Feb; 37(2):515-22. PubMed ID: 7059653
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Effect of different molecular weight dextrans on the thixotropic properties of red blood cell suspensions].
    Chen HQ
    Hua Xi Yi Ke Da Xue Xue Bao; 1986 Sep; 17(3):169-72. PubMed ID: 2435652
    [No Abstract]   [Full Text] [Related]  

  • 60. Erythrocyte aggregation tendency and cellular properties in horse, human, and rat: a comparative study.
    Baskurt OK; Farley RA; Meiselman HJ
    Am J Physiol; 1997 Dec; 273(6):H2604-12. PubMed ID: 9435593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.