These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 5195869)

  • 1. [Permeability of the thoracic cavity for low-frequency sound and its diagnostic significance. I. Setting up the apparatus].
    Böhme H; Löw J
    Z Erkr Atmungsorgane Folia Bronchol; 1969; 130(5):397-408. PubMed ID: 5195869
    [No Abstract]   [Full Text] [Related]  

  • 2. [Behavior of the intrathoracic cavity in passage of low-frequency sound and its diagnostic importance. IV. Sound passage on infiltrating lung changes].
    Böhme H
    Z Erkr Atmungsorgane Folia Bronchol; 1970; 132(3):325-35. PubMed ID: 5203550
    [No Abstract]   [Full Text] [Related]  

  • 3. [Behavior of the intrathoracic cavity in passage of low-frequency sound and its diagnostic importance. 3. Comparative clinical-physiological examinations in changed respiratory mechanics].
    Böhme H
    Z Erkr Atmungsorgane Folia Bronchol; 1970; 132(3):315-23. PubMed ID: 5204620
    [No Abstract]   [Full Text] [Related]  

  • 4. A high resolution computer model for sound propagation in the human thorax based on the Visible Human data set.
    Narasimhan C; Ward R; Kruse KL; Guddati M; Mahinthakumar G
    Comput Biol Med; 2004 Mar; 34(2):177-92. PubMed ID: 14972636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boundary element model for simulating sound propagation and source localization within the lungs.
    Ozer MB; Acikgoz S; Royston TJ; Mansy HA; Sandler RH
    J Acoust Soc Am; 2007 Jul; 122(1):657-61. PubMed ID: 17614522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of an acoustical product in reducing high-frequency sound within unoccupied incubators.
    Kellam B; Bhatia J
    J Pediatr Nurs; 2009 Aug; 24(4):338-43. PubMed ID: 19632512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hearing at low and infrasonic frequencies.
    Møller H; Pedersen CS
    Noise Health; 2004; 6(23):37-57. PubMed ID: 15273023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Passage behavior of the intrathoracic space for low frequency sound and its diagnostic significance. II. Principles of technical measurements and preliminary studies for the interpretation of the results].
    Böhme H; Löw J
    Z Erkr Atmungsorgane Folia Bronchol; 1969; 131(1):55-68. PubMed ID: 5197901
    [No Abstract]   [Full Text] [Related]  

  • 9. Variability and repeatability of perineal sound recording in a population of healthy male volunteers.
    Idzenga T
    Neurourol Urodyn; 2008; 27(8):802-6. PubMed ID: 18551575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of room acoustics and sound-field amplification on word recognition performance in young adult listeners in suboptimal listening conditions.
    Larsen JB; Vega A; Ribera JE
    Am J Audiol; 2008 Jun; 17(1):50-9. PubMed ID: 18519579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral analysis of /s/ sound with changing angulation of the maxillary central incisors.
    Runte C; Tawana D; Dirksen D; Runte B; Lamprecht-Dinnesen A; Bollmann F; Seifert E; Danesh G
    Int J Prosthodont; 2002; 15(3):254-8. PubMed ID: 12066488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Underwater sound pressure variation and bottlenose dolphin (Tursiops truncatus) hearing thresholds in a small pool.
    Finneran JJ; Schlundt CE
    J Acoust Soc Am; 2007 Jul; 122(1):606-14. PubMed ID: 17614517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The low-frequency sound speed of fluid-like gas-bearing sediments.
    Wilson PS; Reed AH; Wood WT; Roy RA
    J Acoust Soc Am; 2008 Apr; 123(4):EL99-104. PubMed ID: 18396928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing low frequency sound transmission measurements using a synthesis method.
    Bravo T; Maury C
    J Acoust Soc Am; 2007 Aug; 122(2):869-80. PubMed ID: 17672637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Source localization from an elevated acoustic sensor array in a refractive atmosphere.
    Ostashev VE; Scanlon MV; Wilson DK; Vecherin SN
    J Acoust Soc Am; 2008 Dec; 124(6):3413-20. PubMed ID: 19206770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helmholtz-like resonators for thermoacoustic prime movers.
    Andersen BJ; Symko OG
    J Acoust Soc Am; 2009 Feb; 125(2):787-92. PubMed ID: 19206856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonant frequency shifts induced by a large spherical object in an air-filled acoustic cavity.
    Cordero ML; Mujica N
    J Acoust Soc Am; 2007 Jun; 121(6):EL244-50. PubMed ID: 17552576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nasal cavity dimensions in the newborn measured by acoustic reflections.
    Pedersen OF; Berkowitz R; Yamagiwa M; Hilberg O
    Laryngoscope; 1994 Aug; 104(8 Pt 1):1023-8. PubMed ID: 8052067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Changes occurring in the chest cavity after lung resection and pneumonectomies].
    Protsiuk RG
    Vrach Delo; 1980 Feb; (2):51-5. PubMed ID: 7368693
    [No Abstract]   [Full Text] [Related]  

  • 20. Permeability determination through NMR detection of acoustically induced fluid oscillation.
    Looyestijn WJ; Smits RM; Abu-Shiekah I; Kuvshinov B; Hofman JP; Schwing A
    Magn Reson Imaging; 2006 Nov; 24(9):1187-201. PubMed ID: 17071341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.