BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 520325)

  • 41. Comparison of Production and Fluorescence Characteristics of Phycoerythrin from Three Strains of
    Li C; Wu H; Xiang W; Wu H; Wang N; Wu J; Li T
    Foods; 2022 Jul; 11(14):. PubMed ID: 35885311
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distinct subunits of phycoerythrin from Porphyridium cruentum and their spectral characteristics.
    Fujimori E; Pecci J
    Arch Biochem Biophys; 1967 Feb; 118(2):448-55. PubMed ID: 6033720
    [No Abstract]   [Full Text] [Related]  

  • 43. Chromophore content of C-phycoerythrin from various Cyanobacteria.
    Muckle G; Rüdiger W
    Z Naturforsch C Biosci; 1977; 32(11-12):957-62. PubMed ID: 146359
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A novel subunit separation procedure for cryptomonad phycoerythrin 545.
    MacColl R; Berns DS
    Biochem Biophys Res Commun; 1979 Oct; 90(3):849-55. PubMed ID: 41526
    [No Abstract]   [Full Text] [Related]  

  • 45. Economic analysis of pilot-scale production of B-phycoerythrin.
    Torres-Acosta MA; Ruiz-Ruiz F; Aguilar-Yáñez JM; Benavides J; Rito-Palomares M
    Biotechnol Prog; 2016 Nov; 32(6):1472-1479. PubMed ID: 27556892
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sterols in Porphyridium species. 4alpha-methyl-5alpha-cholesta-8,22-dien-3beta-ol and 4alpha, 24epsilon-dimethyl-5alpha-cholesta-8,22-dien-3beta-ol: two novel sterols from Porphyridium cruentum.
    Beastall GH; Tyndall AM; Rees HH; Goodwin TW
    Eur J Biochem; 1974 Jan; 41(2):301-9. PubMed ID: 4816898
    [No Abstract]   [Full Text] [Related]  

  • 47. AMINO ACID COMPOSITION AND C-TERMINAL RESIDUES OF ALGAL BILIPROTEINS.
    RAFTERY MA; OHEOCHA C
    Biochem J; 1965 Jan; 94(1):166-70. PubMed ID: 14342224
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced B-phycoerythrin production by the red microalga Porphyridium marinum: A powerful agent in industrial applications.
    Gargouch N; Karkouch I; Elleuch J; Elkahoui S; Michaud P; Abdelkafi S; Laroche C; Fendri I
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2106-2114. PubMed ID: 30201560
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative studies of chromatographically separated phycoerythrins and phycocyanins.
    HAXO F; O'HEOCHA C; NORRIS P
    Arch Biochem Biophys; 1955 Jan; 54(1):162-73. PubMed ID: 13229368
    [No Abstract]   [Full Text] [Related]  

  • 50. Effects of chromatic illumination on cyanobacterial phycobilisomes. Evidence for the specific induction of a second pair of phycocyanin subunits in Pseudanabaena 7409 grown in red light.
    Bryant DA; Cohen-Bazire G
    Eur J Biochem; 1981 Oct; 119(2):415-24. PubMed ID: 6796413
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Properties of phycobilins from Porphyra naiadum.
    AIRTH RL; BLINKS LR
    J Gen Physiol; 1957 Sep; 41(1):77-90. PubMed ID: 13463270
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Absence of glycosylation on cyanobacterial phycobilisome linker polypeptides and rhodophytan phycoerythrins.
    Fairchild CD; Jones IK; Glazer AN
    J Bacteriol; 1991 May; 173(9):2985-92. PubMed ID: 1902214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biliprotein assembly in the disc-shaped phycobilisomes of Rhodella violacea. Electron microscopical and biochemical analysis of B-phycoerythrin and B-phycoerythrin--C-phycocyanin aggregates.
    Mörschel E; Wehrmeyer W; Koller KP
    Eur J Cell Biol; 1980 Aug; 21(3):319-27. PubMed ID: 7449773
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation, and electron microscopy.
    Gantt E; Lipschultz CA; Zilinskas B
    Biochim Biophys Acta; 1976 May; 430(2):375-88. PubMed ID: 1276188
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation, properties and spatial site analysis of gamma subunits of B-phycoerythrin and R-phycoerythrin.
    Wang G; Zhou B; Zeng C
    Sci China C Life Sci; 1998 Feb; 41(1):9-17. PubMed ID: 18726265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Picosecond energy transfer in Porphyridium cruentum and Anacystis nidulans.
    Brody SS; Treadwell C; Barber J
    Biophys J; 1981 Jun; 34(3):439-49. PubMed ID: 6788106
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phycobilin heterologous production from the Rhodophyta Porphyridium cruentum.
    Montoya EJO; Dorion S; Atehortua-Garcés L; Rivoal J
    J Biotechnol; 2021 Nov; 341():30-42. PubMed ID: 34500003
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structures and apoprotein linkages of phycoerythrobilin and phycocyanobilin.
    Killilea SD; O'Carra P; Murphy RF
    Biochem J; 1980 May; 187(2):311-20. PubMed ID: 7396852
    [TBL] [Abstract][Full Text] [Related]  

  • 59. One-step purification of R-phycoerythrin from the red macroalga Palmaria palmata using preparative polyacrylamide gel electrophoresis.
    Galland-Irmouli AV; Pons L; Luçon M; Villaume C; Mrabet NT; Guéant JL; Fleurence J
    J Chromatogr B Biomed Sci Appl; 2000 Feb; 739(1):117-23. PubMed ID: 10744320
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Subunits of phycoerythrin from Fremyella diplosiphon: chemical and immunochemical characterization.
    Takemoto J; Bogorad L
    Biochemistry; 1975 Mar; 14(6):1211-6. PubMed ID: 804315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.