These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 520547)

  • 1. On the efficiency of energy conversion in sodium-driven D-glucose transport across small intestinal brush border membrane vesicles: an estimation.
    Kessler M; Semenza G
    FEBS Lett; 1979 Dec; 108(1):205-8. PubMed ID: 520547
    [No Abstract]   [Full Text] [Related]  

  • 2. Involvement of multiple sodium ions in intestinal d-glucose transport.
    Kaunitz JD; Gunther R; Wright EM
    Proc Natl Acad Sci U S A; 1982 Apr; 79(7):2315-8. PubMed ID: 6954543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of SH-groups in the concentrative transport of D-glucose into brush border membrane vesicles.
    Biber J; Hauser H
    FEBS Lett; 1979 Dec; 108(2):451-6. PubMed ID: 520588
    [No Abstract]   [Full Text] [Related]  

  • 4. Phosphate transport across brush border and basolateral membrane vesicles of small intestine.
    Danisi G; van Os CH; Straub RW
    Prog Clin Biol Res; 1984; 168():229-34. PubMed ID: 6514734
    [No Abstract]   [Full Text] [Related]  

  • 5. Temperature dependence of solute transport and enzyme activities in hog renal brush border membrane vesicles.
    De Smedt H; Kinne R
    Biochim Biophys Acta; 1981 Nov; 648(2):247-53. PubMed ID: 7306539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of glucose and leucine by intestinal membrane vesicles in genetic diabetes.
    Bennetts R; Ramaswamy K
    Am J Physiol; 1980 May; 238(5):G419-23. PubMed ID: 7377353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems.
    Kessler M; Acuto O; Storelli C; Murer H; Müller M; Semenza G
    Biochim Biophys Acta; 1978 Jan; 506(1):136-54. PubMed ID: 620021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Na+/D-glucose co-transporter of the small-intestinal brush-border membrane.
    Semenza G
    Biochem Soc Trans; 1982 Feb; 10(1):7. PubMed ID: 7199493
    [No Abstract]   [Full Text] [Related]  

  • 9. Transient opening of brush border membrane vesicles in alkaline media: preservation of D-glucose transport after removal of extrinsic proteins.
    Klip A; Grinstein S; Marti T; Semenza G
    FEBS Lett; 1979 Sep; 105(2):224-8. PubMed ID: 39782
    [No Abstract]   [Full Text] [Related]  

  • 10. Specific photoaffinity inactivation of the D-glucose transporter in small intestinal brush border membrane using new phlorizin analogues.
    Hosang M; Vasella A; Semenza G
    Biochemistry; 1981 Sep; 20(20):5844-54. PubMed ID: 7197550
    [No Abstract]   [Full Text] [Related]  

  • 11. High-affinity phlorizin binding to brush border membranes from small intestine: identity with (a part of) the glucose transport system, dependence on Na +-gradient, partial purification.
    Tannenbaum C; Toggenburger G; Kessler M; Rothstein A; Semenza G
    J Supramol Struct; 1977; 6(4):519-33. PubMed ID: 413010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium and glucose uptake in rat small intestinal brush-border membrane vesicles. Modulation by exogenous hypercortisolism and 1,25-dihydroxyvitamin D-3.
    Braun HJ; Birkenhäger JC; De Jonge HR
    Biochim Biophys Acta; 1984 Jul; 774(1):81-90. PubMed ID: 6547350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased Na+-gradient-dependent D-glucose transport in brush-border membrane vesicles from rabbits with experimental Fanconi syndrome.
    Yanase M; Orita Y; Okada N; Nakanishi T; Horio M; Ando A; Abe H
    Biochim Biophys Acta; 1983 Aug; 733(1):95-101. PubMed ID: 6882758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hyperglycemia on D-glucose transport across the brush-border and basolateral membrane of rat small intestine.
    Maenz DD; Cheeseman CI
    Biochim Biophys Acta; 1986 Aug; 860(2):277-85. PubMed ID: 3741853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D-Glucose-dependent sodium transport in renal brush border membrane vesicles.
    Hilden SA; Sacktor B
    J Biol Chem; 1979 Aug; 254(15):7090-6. PubMed ID: 88448
    [No Abstract]   [Full Text] [Related]  

  • 16. Cholera toxin induces changes in the ion permeability of intestinal brush border membranes.
    Bavros F; Del Le Peña P; Gascón S; Ramos S; Lazo PS
    Biochim Biophys Acta; 1981 Jun; 644(1):143-6. PubMed ID: 7260066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarity in effects of Na+ gradients and membrane potentials on D-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rattit intestinal mucosal cells.
    Toggenburger G; Kessler M; Rothstein A; Semenza G; Tannenbaum C
    J Membr Biol; 1978 May; 40(3):269-90. PubMed ID: 660646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroneutral Na+/dicarboxylic amino acid cotransport in rat intestinal brush border membrane vesicles.
    Corcelli A; Prezioso G; Palmieri F; Storelli C
    Biochim Biophys Acta; 1982 Jul; 689(1):97-105. PubMed ID: 6125215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pH and sodium on phosphate transport across brush border membrane vesicles of small intestine.
    Danisi G; Murer H; Straub RW
    Adv Exp Med Biol; 1984; 178():173-80. PubMed ID: 6507155
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of chlorpromazine on sugar transport across isolated brush-border membranes of the pig [proceedings].
    Manning AS; McMullan JM
    Biochem Soc Trans; 1979 Oct; 7(5):963-5. PubMed ID: 510758
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.