These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 520565)

  • 1. Microsequence analysis: I. Peptide isolation using high-performance liquid chromatography.
    Hughes GJ; Winterhalter KH; Wilson KJ
    FEBS Lett; 1979 Dec; 108(1):81-6. PubMed ID: 520565
    [No Abstract]   [Full Text] [Related]  

  • 2. Application of high-performance liquid chromatographic peptide purification to protein microsequencing by solid-phase Edman degradation.
    L'Italien JJ; Strickler JE
    Anal Biochem; 1982 Nov; 127(1):198-212. PubMed ID: 7165088
    [No Abstract]   [Full Text] [Related]  

  • 3. Separation of large denatured peptides by reverse phase high performance liquid chromatography. Trifluoroacetic acid as a peptide solvent.
    Mahoney WC; Hermodson MA
    J Biol Chem; 1980 Dec; 255(23):11199-203. PubMed ID: 7440537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of cyanogen bromide fragments from normal and abnormal human serum albumin by reversed-phase high-performance liquid chromatography.
    Iadarola P; Ferri G; Galliano M; Minchiotti L; Zapponi MC
    J Chromatogr; 1984 Aug; 298(2):336-44. PubMed ID: 6480755
    [No Abstract]   [Full Text] [Related]  

  • 5. Reversed-phase liquid chromatography of peptides for direct micro-sequencing.
    Reinbolt J; Hounwanou N; Boulanger Y; Wittmann-Liebold B; Bosserhoff A
    J Chromatogr; 1983 Mar; 259(1):121-30. PubMed ID: 6343406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Primary structure of the cytoplasmic aspartate aminotransferases from the swine myocardium. Isolation, purification and characteristics of the peptides from cyanogen bromide cleavage].
    Nosikov VV; Polianovskiĭ OL; Braunshtein AE; Grishin EV; Ovchinnikov IuA
    Biokhimiia; 1975; 40(1):107-14. PubMed ID: 1138991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary structure of flavocytochrome b2 from baker's yeast. Purification by reverse-phase high-pressure liquid chromatography and sequencing of fragment alpha cyanogen bromide peptides.
    Ghrir R; Becam AM; Lederer F
    Eur J Biochem; 1984 Feb; 139(1):59-74. PubMed ID: 6365548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification of cyanogen bromide fragments from beta-2-glycoprotein I by high-performance liquid chromatography.
    Lozier J; Takahashi N; Putnam FW
    J Chromatogr; 1983 Aug; 266():545-54. PubMed ID: 6630361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective isolation of the amino-terminal peptide from alpha-amino blocked protein.
    Akiyama TH; Sasagawa T
    Methods Mol Biol; 1997; 64():85-9. PubMed ID: 9116842
    [No Abstract]   [Full Text] [Related]  

  • 10. Rapid fractionation of collagen chains and peptides by high-performance liquid chromatography.
    Bateman JF; Mascara T; Chan D; Cole WG
    Anal Biochem; 1986 Apr; 154(1):338-44. PubMed ID: 3706733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal amino acid sequencing of proteins by in situ cyanogen bromide cleavage in polyacrylamide gels.
    Jahnen W; Ward LD; Reid GE; Moritz RL; Simpson RJ
    Biochem Biophys Res Commun; 1990 Jan; 166(1):139-45. PubMed ID: 2302197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of the A gamma and G gamma cyanogen bromide peptides of human fetal hemoglobin by high-pressure liquid chromatography.
    Stoming TA; Garver FA; Gangarosa MA; Harrison JM; Huisman TH
    Anal Biochem; 1979 Jul; 96(1):113-7. PubMed ID: 495974
    [No Abstract]   [Full Text] [Related]  

  • 13. [Isolation of peptides obtained by the action of cyanogen bromide on fragment A of diphtheria toxin].
    Falmagne P; Demets M
    Arch Int Physiol Biochim; 1973 Sep; 81(3):588. PubMed ID: 4127513
    [No Abstract]   [Full Text] [Related]  

  • 14. The sequence of an atriopeptigen: a precursor of the bioactive atrial peptides.
    Geller DM; Currie MG; Siegel NR; Fok KF; Adams SP; Needleman P
    Biochem Biophys Res Commun; 1984 Jun; 121(3):802-7. PubMed ID: 6547606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein fingerprinting by SDS-gel electrophoresis after partial fragmentation with CNBr.
    Nikodem V; Fresco JR
    Anal Biochem; 1979 Sep; 97(2):382-6. PubMed ID: 525799
    [No Abstract]   [Full Text] [Related]  

  • 16. Peptide-based affinity labeling of adenosine cyclic monophosphate-dependent protein kinase.
    Miller WT
    Methods Enzymol; 1991; 200():500-8. PubMed ID: 1956334
    [No Abstract]   [Full Text] [Related]  

  • 17. Microsequence analysis: IV. Automatic liquid-phase sequencing using DABITC.
    Wilson KJ; Hunziker P; Hughes GJ
    FEBS Lett; 1979 Dec; 108(1):98-102. PubMed ID: 520566
    [No Abstract]   [Full Text] [Related]  

  • 18. Separation of collagen cyanogen bromide-derived peptides by reversed-phase high-performance liquid chromatography.
    van der Rest M; Bennett HP; Solomon S; Glorieux FH
    Biochem J; 1980 Oct; 191(1):253-6. PubMed ID: 7470094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of capillary electrophoresis in peptide research.
    Yildiz E; Grübler G; Hörger S; Zimmermann H; Echner H; Stoeva S; Voelter W
    Electrophoresis; 1992; 13(9-10):683-6. PubMed ID: 1459092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence determination of eglin C using combined microtechniques of amino acid analysis, peptide isolation, and automatic Edman degradation.
    Knecht R; Seemüller U; Liersch M; Fritz H; Braun DG; Chang JY
    Anal Biochem; 1983 Apr; 130(1):65-71. PubMed ID: 6869810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.