These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 5212153)

  • 1. Nuclear magnetic resonance studies of macromolecules with fluorine nuclei as probes.
    Dwek RA
    Ciba Found Symp; 1971; 2():239-79. PubMed ID: 5212153
    [No Abstract]   [Full Text] [Related]  

  • 2. Use of 19 F-nuclear magnetic resonance spectroscopy for detection of protein conformation changes: application to lysozyme, ribonuclease and hemoglobin.
    Raftery MA; Huestis WH; Millett F
    Cold Spring Harb Symp Quant Biol; 1972; 36():541-50. PubMed ID: 4508166
    [No Abstract]   [Full Text] [Related]  

  • 3. A 19 F nuclear magnetic resonance study of the binding of trifluoroacetylglucosamine oligomers to lysozyme.
    Millett F; Raftery MA
    Biochemistry; 1972 Apr; 11(9):1639-43. PubMed ID: 5063710
    [No Abstract]   [Full Text] [Related]  

  • 4. N-Fluoroacetyl-D-glucosamine as a molecular probe of lysozyme structure using ( 19 F)fluorine-nuclear-magnetic resonance techniques.
    Dwek A; Kent PW; Xavier AV
    Eur J Biochem; 1971 Nov; 23(2):343-8. PubMed ID: 5156376
    [No Abstract]   [Full Text] [Related]  

  • 5. A structural study by 19 F-nuclear-magnetic resonance of the binding of sugars to lysozyme.
    Butchard CG; Dwek RA; Kent PW; Williams JP; Xavier AV
    Eur J Biochem; 1972 Jun; 27(3):548-53. PubMed ID: 5050662
    [No Abstract]   [Full Text] [Related]  

  • 6. N-fluoroacetyl-alpha-D-glucosamine as a molecular probe of lysozyme structure by using ( 19 F) fluorine nuclear-magnetic-resonance techniques.
    Kent PW; Dwek RA
    Biochem J; 1971 Jan; 121(1):11P-12P. PubMed ID: 5165619
    [No Abstract]   [Full Text] [Related]  

  • 7. Nuclear magnetic resonance and ultraviolet difference spectral studies of the binding properties of turkey egg white lysozyme. Consequences of the replacement of Asp 101 by glycine.
    Arnheim N; Millett F; Raftery MA
    Arch Biochem Biophys; 1974 Nov; 165(1):281-7. PubMed ID: 4474836
    [No Abstract]   [Full Text] [Related]  

  • 8. Intrinsic catalytic activity of the zymogen, bovine procarboxypeptidase A. A kinetic study using fluorine analogues.
    Canonici P; Behnke WD
    Biochem Biophys Res Commun; 1974 Feb; 56(3):575-9. PubMed ID: 4857054
    [No Abstract]   [Full Text] [Related]  

  • 9. Characterization of concanavalin A sugar binding site by 19F nuclear magnetic resonance.
    Alter GM; Magnuson JA
    Biochemistry; 1974 Sep; 13(19):4038-45. PubMed ID: 4412399
    [No Abstract]   [Full Text] [Related]  

  • 10. An NMR method for characterizing conformation changes in proteins.
    Millett F; Raftery MA
    Biochem Biophys Res Commun; 1972 May; 47(3):625-32. PubMed ID: 5038667
    [No Abstract]   [Full Text] [Related]  

  • 11. The active center of aspartate transaminase. A fluorine-19 nuclear magnetic resonance study of the anion binding site.
    Cheng S; Martinez-Carrion M
    J Biol Chem; 1972 Oct; 247(20):6597-602. PubMed ID: 5076771
    [No Abstract]   [Full Text] [Related]  

  • 12. A nuclear magnetic resonance study of lysozyme inhibition. Effects of dimerization and pH on saccharide binding.
    Studebaker JF; Sykes BD; Wien R
    J Am Chem Soc; 1971 Sep; 93(18):4579-85. PubMed ID: 5131158
    [No Abstract]   [Full Text] [Related]  

  • 13. Fluorine nuclear magnetic resonance studies of trifluoroacetyl-insulin derivatives. Effects of pH on conformation and aggregation.
    Paselk RA; Levy D
    Biochemistry; 1974 Jul; 13(16):3340-6. PubMed ID: 4841066
    [No Abstract]   [Full Text] [Related]  

  • 14. A multinuclear nuclear magnetic resonance study of the monovalent-divalent cation sites of pyruvate kinase.
    Raushel FM; Villafranca JJ
    Biochemistry; 1980 Nov; 19(24):5481-5. PubMed ID: 7193048
    [No Abstract]   [Full Text] [Related]  

  • 15. Nuclear magnetic resonance study of the binding of phosphoenolpyruvate and phosphoenol-alpha-ketobutyrate to manganese pyruvate kinase. Temperature, frequency,and monovalent cation dependence of water proton nuclear magnetic resonance relaxation rates.
    James TL; Reuben J; Cohn M
    J Biol Chem; 1973 Sep; 248(18):6443-9. PubMed ID: 4730326
    [No Abstract]   [Full Text] [Related]  

  • 16. Investigation of the mechanism of ligand binding with cobalt(II) human carbonic anhydrase by 1 H and 19 F nuclear magnetic resonance spectroscopy.
    Taylor PW; Feeney J; Burgen AS
    Biochemistry; 1971 Oct; 10(21):3866-75. PubMed ID: 5003665
    [No Abstract]   [Full Text] [Related]  

  • 17. Use of fluorine-19 nuclear magnetic resonance to study conformation changes in selectively modified ribonuclease S.
    Huestis WH; Raftery MA
    Biochemistry; 1971 Mar; 10(7):1181-6. PubMed ID: 5102781
    [No Abstract]   [Full Text] [Related]  

  • 18. Kinetic and magnetic resonance studies of pyruvate kinase. 3. The enzyme-metal-phosphoryl bridge complex in the fluorokinase reaction.
    Mildvan AS; Leigh JS; Cohn M
    Biochemistry; 1967 Jun; 6(6):1805-18. PubMed ID: 6035920
    [No Abstract]   [Full Text] [Related]  

  • 19. Extensions of the allosteric model for hemoglobin. II. Consequences of functional nonequivalence of the alpha and beta chains.
    Edelstein SJ
    Biochemistry; 1974 Nov; 13(24):4998-5002. PubMed ID: 4433533
    [No Abstract]   [Full Text] [Related]  

  • 20. The use of spin labels for measuring distances in biological systems.
    Morrisett JD; Wien RW; McConnell HM
    Ann N Y Acad Sci; 1973 Dec; 222():149-62. PubMed ID: 4361853
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.