These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
39 related articles for article (PubMed ID: 521978)
1. Excitation of CA1 pyramidal neurones of the hippocampus by the tetra- and octapeptide C-terminal fragments of cholecystokinin [proceedings]. Dodd J; Kelly JS J Physiol; 1979 Oct; 295():61P-62P. PubMed ID: 521978 [No Abstract] [Full Text] [Related]
2. CCKB receptors mediate CCK-8S-induced activation of dorsal hippocampus CA3 pyramidal neurons: an in vivo electrophysiological study in the rat. Gronier B; Debonnel G Synapse; 1995 Oct; 21(2):158-68. PubMed ID: 8584977 [TBL] [Abstract][Full Text] [Related]
3. The actions of cholecystokinin and related peptides on pyramidal neurones of the mammalian hippocampus. Dodd J; Kelly JS Brain Res; 1981 Feb; 205(2):337-50. PubMed ID: 6162516 [TBL] [Abstract][Full Text] [Related]
4. [Effect of microapplications of cholecystokinin octapeptide on neurons of the dorsal hippocampus of alert rabbits]. Belyĭ VP; Fekete M Fiziol Zh SSSR Im I M Sechenova; 1981 Aug; 67(8):1152-9. PubMed ID: 6116628 [TBL] [Abstract][Full Text] [Related]
5. Kainic acid seizures cause enhanced expression of cholecystokinin-octapeptide in the cortex and hippocampus of the rat. Gruber B; Greber S; Sperk G Synapse; 1993 Nov; 15(3):221-8. PubMed ID: 8278898 [TBL] [Abstract][Full Text] [Related]
6. Excitation of rat hippocampal pyramidal neurones by somatostatin [proceedings]. Dodd J; Kelly JS; Rivier JE J Physiol; 1978 Sep; 282():16P-17P. PubMed ID: 722514 [No Abstract] [Full Text] [Related]
7. Effects of cholecystokinin octapeptide sulphate ester and unsulphated cholecystokinin octapeptide on active avoidance behaviour in rats. Fekete M; Bokor M; Penke B; Telegdy G Acta Physiol Acad Sci Hung; 1982; 60(1-2):57-63. PubMed ID: 6306996 [TBL] [Abstract][Full Text] [Related]
8. Modulation of AMPA receptor-mediated ion current by pituitary adenylate cyclase-activating polypeptide (PACAP) in CA1 pyramidal neurons from rat hippocampus. Costa L; Santangelo F; Li Volsi G; Ciranna L Hippocampus; 2009 Jan; 19(1):99-109. PubMed ID: 18727050 [TBL] [Abstract][Full Text] [Related]
9. Effects of cholecystokinin (CCK-33) and its fragments, C-terminal octapeptide (CCK-8) and C-terminal tetrapeptide (CCK-4), on the circulatory system of diabetic rats. Fiedorowicz RJ; Wiśniewski K Pol J Pharmacol Pharm; 1989; 41(6):561-72. PubMed ID: 2485904 [TBL] [Abstract][Full Text] [Related]
10. Intra-hippocampal tonic inhibition influences formalin pain-induced pyramidal cell suppression, but not excitation in dorsal field CA1 of rat. Zheng F; Khanna S Brain Res Bull; 2008 Dec; 77(6):374-81. PubMed ID: 18852032 [TBL] [Abstract][Full Text] [Related]
11. Estradiol induces a phasic Fos response in the hippocampal CA1 and CA3 regions of adult female rats. Rudick CN; Woolley CS Hippocampus; 2000; 10(3):274-83. PubMed ID: 10902897 [TBL] [Abstract][Full Text] [Related]
12. The influence of C-terminal cholecystokinin fragments in the circulatory system of rats. Wiśniewska RJ; Kupryszewski G Pol J Pharmacol Pharm; 1992; 44(3):281-7. PubMed ID: 1470565 [TBL] [Abstract][Full Text] [Related]
13. Effects of intraventricular administration of cholecystokinin octapeptide sulfate ester and unsulfated cholecystokinin octapeptide on active avoidance and conditioned feeding behaviour of rats. Fekete M; Szabó A; Balázs M; Penke B; Telegdy G Acta Physiol Acad Sci Hung; 1981; 58(1):39-45. PubMed ID: 6282048 [TBL] [Abstract][Full Text] [Related]
14. Analysis of the behavioral activity of C- and N-terminal fragments of cholecystokinin octapeptide. Crawley JN; St-Pierre S; Gaudreau P J Pharmacol Exp Ther; 1984 Aug; 230(2):438-44. PubMed ID: 6086888 [TBL] [Abstract][Full Text] [Related]
15. Modulation of passive avoidance behaviour of rats by intracerebroventricular administration of cholecystokinin octapeptide sulfate ester and nonsulfated cholecystokinin octapeptide. Kádár T; Fekete M; Telegdy G Acta Physiol Acad Sci Hung; 1981; 58(4):269-74. PubMed ID: 6291322 [TBL] [Abstract][Full Text] [Related]
16. Selective degeneration of CA1 pyramidal cells by chronic application of bismuth. Müller M; Rietschin L; Grogg F; Streit P; Gähwiler BH Hippocampus; 1994 Apr; 4(2):204-9. PubMed ID: 7951695 [TBL] [Abstract][Full Text] [Related]
17. Nonprincipal neurons and CA2 pyramidal cells, but not mossy cells are immunoreactive for calcitonin gene-related peptide in the mouse hippocampus. Sakurai O; Kosaka T Brain Res; 2007 Dec; 1186():129-43. PubMed ID: 18005945 [TBL] [Abstract][Full Text] [Related]
18. beta-Amyloid increases dendritic Ca2+ influx by inhibiting the A-type K+ current in hippocampal CA1 pyramidal neurons. Chen C Biochem Biophys Res Commun; 2005 Dec; 338(4):1913-9. PubMed ID: 16289381 [TBL] [Abstract][Full Text] [Related]
19. The distribution of cholecystokinin-like immunoreactive neurons and nerve terminals in the retrohippocampal region in the rat and guinea pig. Köhler C; Chan-Palay V J Comp Neurol; 1982 Sep; 210(2):136-46. PubMed ID: 6290546 [TBL] [Abstract][Full Text] [Related]
20. Disparate effects of long-term potentiation on evoked potentials and single CA1 neurons in the hippocampus of anesthetized rats. Martin PD; Shapiro ML Hippocampus; 2000; 10(3):207-12. PubMed ID: 10902890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]