These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 5221062)

  • 1. [The calcium level in living and isolated muscle fibrils of Maia squinado and its regulation by sarcoplasmatic vesicles].
    Portzehl H; Zaoralek P; Grieder A
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1965 Sep; 286(1):44-56. PubMed ID: 5221062
    [No Abstract]   [Full Text] [Related]  

  • 2. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS.
    PORTZEHL H; CALDWELL PC; RUEEGG JC
    Biochim Biophys Acta; 1964 May; 79():581-91. PubMed ID: 14179458
    [No Abstract]   [Full Text] [Related]  

  • 3. [Current problems of the evolutionary biochemistry of muscles].
    Ivanov II
    Zh Evol Biokhim Fiziol; 1973; 8(3):252-9. PubMed ID: 4271687
    [No Abstract]   [Full Text] [Related]  

  • 4. [Distribution of neutral red between intact muscles, glycerinated muscle fibers and the medium].
    Levin SV; Shapiro EA; Shishina NN
    Tsitologiia; 1968; 10(1):43-55. PubMed ID: 5669305
    [No Abstract]   [Full Text] [Related]  

  • 5. An electron microscopic study of myofilament calcium binding sites in native, EGTA-chelated and calcium reloaded glycerolated mammalian skeletal muscle.
    Davis WL; Matthews JL; Martin JH
    Calcif Tissue Res; 1974; 14(2):139-52. PubMed ID: 4132183
    [No Abstract]   [Full Text] [Related]  

  • 6. Structural and enzymatic properties of the calcium transporting membranes of the sarcoplasmic reticulum.
    Hasselbach W
    Ann N Y Acad Sci; 1966 Jul; 137(2):1041-8. PubMed ID: 5229806
    [No Abstract]   [Full Text] [Related]  

  • 7. Energetics and "efficiency" in the isolated contractile machinery of an insect fibrillar muscle at various frequencies of oscillation.
    Steiger GJ; Rüegg JC
    Pflugers Arch; 1969; 307(1):1-21. PubMed ID: 4240315
    [No Abstract]   [Full Text] [Related]  

  • 8. Muscular contraction.
    Huxley AF
    J Physiol; 1974 Nov; 243(1):1-43. PubMed ID: 4449057
    [No Abstract]   [Full Text] [Related]  

  • 9. Aequorin-monitored calcium transients in single Maia muscle fibres.
    Ashley CC
    J Physiol; 1969 Jul; 203(1):32P-33P. PubMed ID: 5821891
    [No Abstract]   [Full Text] [Related]  

  • 10. Oscillatory mechanism in fibrillar insect flight muscle.
    Rüegg JC
    Experientia; 1968 Jun; 24(6):529-36. PubMed ID: 4235194
    [No Abstract]   [Full Text] [Related]  

  • 11. CONTRACTION-BAND FORMATION IN BARNACLE MYOFIBRILS.
    BASKIN RJ; WIESE GM
    Science; 1964 Jan; 143(3602):134-6. PubMed ID: 14075722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The participation of parvalbumins in the activation-relaxation cycle of vertebrate fast skeletal-muscle.
    Pechère JF; Derancourt J; Haiech J
    FEBS Lett; 1977 Mar; 75(1):111-4. PubMed ID: 404185
    [No Abstract]   [Full Text] [Related]  

  • 13. Influence of tension on the incorporation of inorganic phosphate into ATP in glycerinated muscle fibers.
    Gillis JM; Maréchal G
    J Physiol; 1971; 214 Suppl():41P-43P. PubMed ID: 5575372
    [No Abstract]   [Full Text] [Related]  

  • 14. Demonstration of mechanochemical coupling in systems containing actin, atp and non-aggregating active myosin derivatives.
    Oplatka A; Gadasi H; Tirosh R; Lamed Y; Muhlrad A; Liron N
    J Mechanochem Cell Motil; 1974 Mar; 2(4):295-306. PubMed ID: 4277009
    [No Abstract]   [Full Text] [Related]  

  • 15. Isometric contraction in glycerinated skeletal muscle of horseshoe crab and rabbit. I. Relation of tension to muscle fiber dimensions.
    Stanley DW; De Villafranca GW
    Comp Biochem Physiol; 1970 Sep; 36(2):263-70. PubMed ID: 5515604
    [No Abstract]   [Full Text] [Related]  

  • 16. Detection, by hydrogen exchange, of a modified membrane conformation linked to calcium transport by sarcoplasmatic vesicles.
    François C
    Biochim Biophys Acta; 1969 Jan; 173(1):86-93. PubMed ID: 5775943
    [No Abstract]   [Full Text] [Related]  

  • 17. The mechanism of the free calcium change in single muscle fibres during contraction.
    Ashley CC; Moisescu DG
    J Physiol; 1973 May; 231(1):23P-25P. PubMed ID: 4715354
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of crosslinking on glycerinated muscle fibres by formaldehyde & glutaraldehyde.
    Dubey SS
    Indian J Biochem; 1970 Jun; 7(2):136-7. PubMed ID: 4248653
    [No Abstract]   [Full Text] [Related]  

  • 19. Polarization of tryptophan fluorescence in muscle.
    Aronson JF; Morales MF
    Biochemistry; 1969 Nov; 8(11):4517-22. PubMed ID: 5353113
    [No Abstract]   [Full Text] [Related]  

  • 20. [Different sensitivity of cross-bridges in the muscle fiber sarcomere in Ca2+-activation].
    Son'kin BIa; Bukatina AE; Alievskaia LL
    Biofizika; 1986; 31(2):348-50. PubMed ID: 3634629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.