These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 522148)

  • 1. Frost-weathering on Mars: experimental evidence for peroxide formation.
    Huguenin RL; Miller KJ; Harwood WS
    J Mol Evol; 1979 Dec; 14(1-3):103-32. PubMed ID: 522148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-Sensitive Aspects of Mars Sample Return (MSR) Science.
    Tosca NJ; Agee CB; Cockell CS; Glavin DP; Hutzler A; Marty B; McCubbin FM; Regberg AB; Velbel MA; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Pratt LM; Smith AL; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Wadhwa M; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S81-S111. PubMed ID: 34904889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxide-modified titanium dioxide: a chemical analog of putative Martian soil oxidants.
    Quinn RC; Zent AP
    Orig Life Evol Biosph; 1999 Jan; 29(1):59-72. PubMed ID: 10077869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smectite clays in Mars soil: evidence for their presence and role in Viking biology experimental results.
    Banin A; Rishpon J
    J Mol Evol; 1979 Dec; 14(1-3):133-52. PubMed ID: 42807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of the Viking Gas Exchange Experiment using palagonite and Fe-rich montmorillonite as terrestrial analogs: implications for the surface composition of Mars.
    Quinn R; Orenberg J
    Geochim Cosmochim Acta; 1993 Oct; 57(19):4611-8. PubMed ID: 11539578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation-Driven Formation of Reactive Oxygen Species in Oxychlorine-Containing Mars Surface Analogues.
    Georgiou CD; Zisimopoulos D; Kalaitzopoulou E; Quinn RC
    Astrobiology; 2017 Apr; 17(4):319-336. PubMed ID: 28418706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chemical activities of the Viking biology experiments and the arguments for the presence of superoxides, peroxides, gamma-Fe2O3 and carbon suboxide polymer in the Martian soil.
    Oyama VI; Berdahl BJ; Woeller F; Lehwalt M
    Life Sci Space Res; 1978; 16():3-8. PubMed ID: 11965660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of Martian surface chemistry.
    Oyama VI; Berdahl BJ
    J Mol Evol; 1979 Dec; 14(1-3):199-210. PubMed ID: 230358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing the H2O2-H2O hypothesis for life on Mars with the TEGA instrument on the Phoenix lander.
    Schulze-Makuch D; Turse C; Houtkooper JM; McKay CP
    Astrobiology; 2008 Apr; 8(2):205-14. PubMed ID: 18393688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short- and long-term olivine weathering in Svalbard: implications for Mars.
    Hausrath EM; Treiman AH; Vicenzi E; Bish DL; Blake D; Sarrazin P; Hoehler T; Midtkandal I; Steele A; Brantley SL
    Astrobiology; 2008 Dec; 8(6):1079-92. PubMed ID: 19191538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidants at the Surface of Mars: A Review in Light of Recent Exploration Results.
    Lasne J; Noblet A; Szopa C; Navarro-González R; Cabane M; Poch O; Stalport F; François P; Atreya SK; Coll P
    Astrobiology; 2016 Dec; 16(12):977-996. PubMed ID: 27925795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of the Viking biology experiments: an overview.
    Klein HP
    J Mol Evol; 1979 Dec; 14(1-3):161-5. PubMed ID: 522151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Search for life on Mars].
    Imshenetskiĭ AA; Murzakov BG
    Mikrobiologiia; 1979; 48(6):1075-81. PubMed ID: 393972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Origin of the oxygen detected by the Viking stations in an analysis of Mars soil].
    Imshenetskiĭ AA; Murzakov BG; Dorofeeva IK
    Mikrobiologiia; 1978; 47(4):699-705. PubMed ID: 703649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of weathering on ecopersistence, reactivity, and potential toxicity of naturally occurring asbestos and asbestiform minerals.
    Enrico Favero-Longo S; Turci F; Tomatis M; Compagnoni R; Piervittori R; Fubini B
    J Toxicol Environ Health A; 2009; 72(5):305-14. PubMed ID: 19184746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous phase reactions of Martian volatiles with putative regolith minerals.
    Clark BC; Kenley SL; O'Brien DL; Huss GR; Mack R; Baird AK
    J Mol Evol; 1979 Dec; 14(1-3):91-102. PubMed ID: 522162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perchlorate radiolysis on Mars and the origin of martian soil reactivity.
    Quinn RC; Martucci HF; Miller SR; Bryson CE; Grunthaner FJ; Grunthaner PJ
    Astrobiology; 2013 Jun; 13(6):515-20. PubMed ID: 23746165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that the reactivity of the martian soil is due to superoxide ions.
    Yen AS; Kim SS; Hecht MH; Frant MS; Murray B
    Science; 2000 Sep; 289(5486):1909-12. PubMed ID: 10988066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the Cytotoxicity of Mars-Relevant Minerals upon Abrasion.
    Sigvartssøn MK; Bak EN; Nørnberg P; Jensen SJK; Thøgersen J; Begnhøj M; Finster K
    Astrobiology; 2023 Oct; 23(10):1090-1098. PubMed ID: 37672600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The analysis of water in the Martian regolith.
    Anderson DM; Tice AR
    J Mol Evol; 1979 Dec; 14(1-3):33-8. PubMed ID: 522156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.