These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 522297)

  • 1. [Measurement of phase transition curves of human finger tapping (author's transl)].
    Yamanishi J; Kawato M; Suzuki R
    Iyodenshi To Seitai Kogaku; 1979 Aug; 17(4):271-7. PubMed ID: 522297
    [No Abstract]   [Full Text] [Related]  

  • 2. [Analysis of coordinated finger tapping with both hands by phase transition curves (author's transl)].
    Yamanishi J; Kawato M; Suzuki R
    Iyodenshi To Seitai Kogaku; 1980 Apr; 18(2):99-104. PubMed ID: 7218564
    [No Abstract]   [Full Text] [Related]  

  • 3. [The study of pinching power (author's transl)].
    Maruo S
    Nihon Seikeigeka Gakkai Zasshi; 1979 Aug; 53(8):979-88. PubMed ID: 512434
    [No Abstract]   [Full Text] [Related]  

  • 4. Neural networks for the coordination of the hands in time.
    Ullén F; Forssberg H; Ehrsson HH
    J Neurophysiol; 2003 Feb; 89(2):1126-35. PubMed ID: 12574485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on human finger tapping neural networks by phase transition curves.
    Yamanishi J; Kawato M; Suzuki R
    Biol Cybern; 1979 Aug; 33(4):199-208. PubMed ID: 497264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MEG responses during rhythmic finger tapping in humans to phasic stimulation and their interpretation based on neural mechanisms.
    Yoshino K; Takagi K; Nomura T; Sato S; Tonoike M
    Biol Cybern; 2002 Jun; 86(6):483-96. PubMed ID: 12111276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural correlates of the spontaneous phase transition during bimanual coordination.
    Aramaki Y; Honda M; Okada T; Sadato N
    Cereb Cortex; 2006 Sep; 16(9):1338-48. PubMed ID: 16306323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time courses of brain activation and their implications for function: a multichannel near-infrared spectroscopy study during finger tapping.
    Sato T; Ito M; Suto T; Kameyama M; Suda M; Yamagishi Y; Ohshima A; Uehara T; Fukuda M; Mikuni M
    Neurosci Res; 2007 Jul; 58(3):297-304. PubMed ID: 17499873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmentation of short keying sequences does not spontaneously transfer to other sequences.
    Verwey WB; Abrahamse EL; Jiménez L
    Hum Mov Sci; 2009 Jun; 28(3):348-61. PubMed ID: 19135276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination of bowing and fingering in violin playing.
    Baader AP; Kazennikov O; Wiesendanger M
    Brain Res Cogn Brain Res; 2005 May; 23(2-3):436-43. PubMed ID: 15820650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SSFSE sequence functional MRI of the human cervical spinal cord with complex finger tapping.
    Xie CH; Kong KM; Guan JT; Chen YX; He JK; Qi WL; Wang XJ; Shen ZW; Wu RH
    Eur J Radiol; 2009 Apr; 70(1):1-6. PubMed ID: 18353589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-series pattern changes related to movement rate in synchronized human tapping.
    Kadota H; Kudo K; Ohtsuki T
    Neurosci Lett; 2004 Nov; 370(2-3):97-101. PubMed ID: 15488302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finger somatotopy in human motor cortex.
    Beisteiner R; Windischberger C; Lanzenberger R; Edward V; Cunnington R; Erdler M; Gartus A; Streibl B; Moser E; Deecke L
    Neuroimage; 2001 Jun; 13(6 Pt 1):1016-26. PubMed ID: 11352607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control.
    Lang CE; Schieber MH
    J Neurophysiol; 2004 Nov; 92(5):2802-10. PubMed ID: 15212429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-precision, low cost system for evaluating finger-tapping tasks.
    Kiziltan E; Barut C; Gelir E
    Int J Neurosci; 2006 Dec; 116(12):1471-80. PubMed ID: 17145681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer keyswitch force-displacement characteristics affect muscle activity patterns during index finger tapping.
    Lee DL; Kuo PL; Jindrich DL; Dennerlein JT
    J Electromyogr Kinesiol; 2009 Oct; 19(5):810-20. PubMed ID: 18515146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor control of rapid sequential finger tapping in humans.
    Arunachalam R; Weerasinghe VS; Mills KR
    J Neurophysiol; 2005 Sep; 94(3):2162-70. PubMed ID: 15928053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetry of cortical activation during maximum and convenient tapping speed.
    Lutz K; Koeneke S; Wüstenberg T; Jäncke L
    Neurosci Lett; 2005 Jan; 373(1):61-6. PubMed ID: 15555778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping.
    Lewis PA; Wing AM; Pope PA; Praamstra P; Miall RC
    Neuropsychologia; 2004; 42(10):1301-12. PubMed ID: 15193939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical impairment of sequential finger movements in Parkinson's disease.
    Agostino R; Berardelli A; Currà A; Accornero N; Manfredi M
    Mov Disord; 1998 May; 13(3):418-21. PubMed ID: 9613731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.