These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 522501)

  • 21. [Modeling of discrete currents of single ion channels of cell membranes using synthetic nanometer pores in polyethylene terephthalate films].
    Lev AA; Gotlib VA; Lebedeva NE
    Tsitologiia; 2008; 50(4):323-8. PubMed ID: 18664115
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The use of synthetic nanometer pores for modeling the conduction block of cation-selective channels of cell membranes by ruthenium red.
    Veinberg IO; Gotlib VA; Apel' PY; Lev AA
    Dokl Biochem Biophys; 2005; 405():454-7. PubMed ID: 16480151
    [No Abstract]   [Full Text] [Related]  

  • 23. Colicin K acts by forming voltage-dependent channels in phospholipid bilayer membranes.
    Schein SJ; Kagan BL; Finkelstein A
    Nature; 1978 Nov; 276(5684):159-63. PubMed ID: 740032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ionic selectivity of pores formed by the matrix protein (porin) of Escherichia coli.
    Benz R; Janko K; Läuger P
    Biochim Biophys Acta; 1979 Mar; 551(2):238-47. PubMed ID: 369608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical description of the ion transport across nanopores with titratable fixed charges: analogies between ion channels and synthetic pores.
    Ramírez P; Aguilella-Arzo M; Alcaraz A; Cervera J; Aguilella VM
    Cell Biochem Biophys; 2006; 44(2):287-312. PubMed ID: 16456229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intrinsic ion selectivity of narrow hydrophobic pores.
    Song C; Corry B
    J Phys Chem B; 2009 May; 113(21):7642-9. PubMed ID: 19419185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ion permeation of pores in model membranes: selectivity, fluctuations and the role of surface charge.
    Bashford CL
    Eur Biophys J; 2004 May; 33(3):280-2. PubMed ID: 14598001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single channel conductance at lipid bilayer membranes in presence of monazomycin.
    Bamberg E; Janko K
    Biochim Biophys Acta; 1976 Mar; 426(3):447-50. PubMed ID: 57800
    [No Abstract]   [Full Text] [Related]  

  • 29. The peptide antibiotic subtilin acts by formation of voltage-dependent multi-state pores in bacterial and artificial membranes.
    Schüller F; Benz R; Sahl HG
    Eur J Biochem; 1989 Jun; 182(1):181-6. PubMed ID: 2471644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unidirectional sodium and potassium fluxes through the sodium channel of squid giant axons.
    Busath D; Begenisich T
    Biophys J; 1982 Oct; 40(1):41-9. PubMed ID: 6291657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane pores--from biology to track-etched membranes.
    Bashford CL
    Biosci Rep; 1995 Dec; 15(6):553-65. PubMed ID: 9156584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Artificial models of transport proteins in membrane].
    Kobuke Y
    Nihon Rinsho; 1996 Mar; 54(3):737-43. PubMed ID: 8904231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transmembrane electrical potential of excitable membranes: a pore analysis influence of surface charges and surface dipoles.
    Gavach C
    J Physiol (Paris); 1981 May; 77(9):1029-33. PubMed ID: 6286954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Key roles of enzyme positions and membrane surface potentials in the properties of biomimetic membranes.
    Charcosset C; Fiaty K; Perrin B; Couturier R; Maïsterrena B
    Arch Biochem Biophys; 2004 Apr; 424(2):235-45. PubMed ID: 15047196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ion transport through pores: a rate-theory analysis.
    Läuger P
    Biochim Biophys Acta; 1973 Jul; 311(3):423-41. PubMed ID: 4729828
    [No Abstract]   [Full Text] [Related]  

  • 36. A simple model for multi-ion permeation. Single-vacancy conduction in a simple pore model.
    Schumaker MF; MacKinnon R
    Biophys J; 1990 Oct; 58(4):975-84. PubMed ID: 1701102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface potentials and the calculated selectivity of ion channels.
    Miedema H
    Biophys J; 2002 Jan; 82(1 Pt 1):156-9. PubMed ID: 11751304
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chloride channels in toad skin.
    Larsen EH; Rasmussen BE
    Philos Trans R Soc Lond B Biol Sci; 1982 Dec; 299(1097):413-34. PubMed ID: 6130539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modifiers of membrane dipole potentials as tools for investigating ion channel formation and functioning.
    Ostroumova OS; Efimova SS; Malev VV
    Int Rev Cell Mol Biol; 2015; 315():245-97. PubMed ID: 25708465
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model for enhanced and selective transport through biological membranes with alternating pores.
    Andreucci D; Bellaveglia D; Cirillo EN
    Math Biosci; 2014 Nov; 257():42-9. PubMed ID: 25128658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.