These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 5231615)
1. Gene control of mammalian pigmentary differentiation. I. Clonal origin of melanocytes. Mintz B Proc Natl Acad Sci U S A; 1967 Jul; 58(1):344-51. PubMed ID: 5231615 [No Abstract] [Full Text] [Related]
2. triping and the pattern of melanocyte cells in chimaeric mice. Wolpert L; Gingell D J Theor Biol; 1970 Oct; 29(1):147-50. PubMed ID: 5493289 [No Abstract] [Full Text] [Related]
3. Clonal distribution of melanocytes in piebald-spotted and variegated mice. Schaible RH J Exp Zool; 1969 Oct; 172(2):181-99. PubMed ID: 5372006 [No Abstract] [Full Text] [Related]
5. The effects of the E alleles upon melanocyte differentiation in the fowl. Brumbaugh JA; Moore JW Can J Genet Cytol; 1969 Mar; 11(1):118-24. PubMed ID: 5797802 [No Abstract] [Full Text] [Related]
6. Spotting genes and internal pigmentation patterns in the mouse. Deol MS J Embryol Exp Morphol; 1971 Aug; 26(1):123-33. PubMed ID: 5565074 [No Abstract] [Full Text] [Related]
7. [Genetic control of morphogenesis]. Koniukhov BV Usp Sovrem Biol; 1975; 80(2):185-203. PubMed ID: 1210649 [No Abstract] [Full Text] [Related]
8. Differentiation of pigment granules in chick melanoblasts cultured in vitro as affected by throxine and antithyroid compounds. MARKERT CL Anat Rec; 1947 Dec; 99(4):588. PubMed ID: 18895386 [No Abstract] [Full Text] [Related]
9. PATTERNS OF PIGMENTATION IN EXPERIMENTALLY PRODUCED MOUSE CHIMAERAE. TARKOWSKI AK J Embryol Exp Morphol; 1964 Dec; 12():575-85. PubMed ID: 14251470 [No Abstract] [Full Text] [Related]
10. Gene control of mammalian differentiation. Mintz B Annu Rev Genet; 1974; 8():411-70. PubMed ID: 4613263 [TBL] [Abstract][Full Text] [Related]
11. Clonal growth versus cell mingling. West JD Basic Life Sci; 1978; 12():435-44. PubMed ID: 752331 [No Abstract] [Full Text] [Related]
12. Cytophysiological basis of disruptive pigmentary patterns in the leopard frog Rana pipiens. II. Wild type and mutant cell-specific patterns. Smith-gill SJ J Morphol; 1975 May; 146(1):35-54. PubMed ID: 1080207 [TBL] [Abstract][Full Text] [Related]
13. Reversal of primary embryonic induction by cold, and the "fixation" of induction in cells activated by lithium chloride. Ansevin KD J Morphol; 1966 Jan; 118(1):1-9. PubMed ID: 5906910 [No Abstract] [Full Text] [Related]
14. [The effects of the white gene on coat pigmentation in mouse aggregation chimeras]. Koniukhov BV; Kindiakov BN; Malinina NA Izv Akad Nauk Ser Biol; 1993; (4):500-6. PubMed ID: 8358273 [TBL] [Abstract][Full Text] [Related]
15. Cytophysiological basis of disruptive pigmentary patterns in the leopard frog Rana pipiens. I. Chromatophore densities and cytophysiology. Smith-Gill SJ J Morphol; 1973 Jul; 140(3):271-84. PubMed ID: 4541478 [No Abstract] [Full Text] [Related]
16. [Mosaic (Chimeric) animals: their experimental production and application (author's transl)]. Elbling L Wien Klin Wochenschr; 1976 Apr; 88(9):302-5. PubMed ID: 973391 [TBL] [Abstract][Full Text] [Related]
17. The effect of carcinogens on melanocytes. SZABO G Ann N Y Acad Sci; 1963 Feb; 100():269-78. PubMed ID: 13979822 [No Abstract] [Full Text] [Related]
18. Characterization of a composite tissue model that supports clonal growth of human melanocytes in vitro and in vivo. Medalie DA; Tompkins RG; Morgan JR J Invest Dermatol; 1998 Nov; 111(5):810-6. PubMed ID: 9804343 [TBL] [Abstract][Full Text] [Related]
19. Role of melanocyte morphology in pigmentation of mouse hair. Sweet SE; Quevedo WC Anat Rec; 1968 Oct; 162(2):243-54. PubMed ID: 5726144 [No Abstract] [Full Text] [Related]
20. [EFFECT OF MSH (MELANOCYTE STIMULATING HORMONE) ON THE MELANOCYTES IN TOADS]. TAKEUCHI R; NISHIOKA T Endokrinologie; 1963 Aug; 44():296-306. PubMed ID: 14087502 [No Abstract] [Full Text] [Related] [Next] [New Search]