These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 523535)

  • 41. Evidence of lateral synaptic interactions in olfactory bulb output cell responses to odors.
    Wilson DA; Leon M
    Brain Res; 1987 Aug; 417(1):175-80. PubMed ID: 3040181
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Odor enrichment increases interneurons responsiveness in spatially defined regions of the olfactory bulb correlated with perception.
    Mandairon N; Didier A; Linster C
    Neurobiol Learn Mem; 2008 Jul; 90(1):178-84. PubMed ID: 18406178
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. I. Aliphatic compounds.
    Imamura K; Mataga N; Mori K
    J Neurophysiol; 1992 Dec; 68(6):1986-2002. PubMed ID: 1491253
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The ability of various chemicals to elicit olfactory beta-waves in the pyriform cortex of meadow voles (Microtus pennsylvanicus) and laboratory rats (Rattus norvegicus).
    Vanderwolf CH; Zibrowski EM; Wakarchuk D
    Brain Res; 2002 Jan; 924(2):151-8. PubMed ID: 11750900
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coding of odor molecules by mitral/tufted cells in rabbit olfactory bulb. II. Aromatic compounds.
    Katoh K; Koshimoto H; Tani A; Mori K
    J Neurophysiol; 1993 Nov; 70(5):2161-75. PubMed ID: 8294977
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Broad activation of the olfactory bulb produces long-lasting changes in odor perception.
    Mandairon N; Stack C; Kiselycznyk C; Linster C
    Proc Natl Acad Sci U S A; 2006 Sep; 103(36):13543-8. PubMed ID: 16938883
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhalation Frequency Controls Reformatting of Mitral/Tufted Cell Odor Representations in the Olfactory Bulb.
    Díaz-Quesada M; Youngstrom IA; Tsuno Y; Hansen KR; Economo MN; Wachowiak M
    J Neurosci; 2018 Feb; 38(9):2189-2206. PubMed ID: 29374137
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Modifications of the olfactory bulb electrocorticogram and trans-glomerular evoked potentials in staggerer mutant mice].
    Math F; Baudoin C; Feron C; Vallat F; Guillermoz P; Astic L; Bride M
    C R Acad Sci III; 1995 Aug; 318(8):843-9. PubMed ID: 7583773
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of olfactory bulb removal and flank shock on copulation in male rats.
    Meisel RL; Lumia AR; Sachs BD
    Physiol Behav; 1980 Sep; 25(3):383-7. PubMed ID: 7443807
    [No Abstract]   [Full Text] [Related]  

  • 50. [An EEG study of different behavioral states of freely moving dolphins].
    Mukhametov LM; Supin AIa
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1975; 25(2):396-401. PubMed ID: 1210706
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Olfactory bulb responses to odor stimulation: analysis of response pattern and intensity relationships.
    Harrison TA; Scott JW
    J Neurophysiol; 1986 Dec; 56(6):1571-89. PubMed ID: 3806183
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Slow and fast wave activity in the olfactory system in cats during perception of pheromones.
    De Boer JN; Verberne G
    Physiol Behav; 1981 Aug; 27(2):223-9. PubMed ID: 7301953
    [No Abstract]   [Full Text] [Related]  

  • 53. Optical imaging of odor preference memory in the rat olfactory bulb.
    Yuan Q; Harley CW; McLean JH; Knöpfel T
    J Neurophysiol; 2002 Jun; 87(6):3156-9. PubMed ID: 12037216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Discrimination among odorants by single neurons of the rat olfactory bulb.
    Wellis DP; Scott JW; Harrison TA
    J Neurophysiol; 1989 Jun; 61(6):1161-77. PubMed ID: 2746317
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of stimulus intensity on the categories of single-unit responses recorded from olfactory bulb neurons in awake freely-breathing rabbits.
    Chaput MA; Lankheet MJ
    Physiol Behav; 1987; 40(4):453-62. PubMed ID: 3628542
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sleep stages and EEG power spectrum in relation to acoustical stimulus arousal threshold in the rat.
    Neckelmann D; Ursin R
    Sleep; 1993 Aug; 16(5):467-77. PubMed ID: 8378687
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones.
    Xu F; Schaefer M; Kida I; Schafer J; Liu N; Rothman DL; Hyder F; Restrepo D; Shepherd GM
    J Comp Neurol; 2005 Sep; 489(4):491-500. PubMed ID: 16025460
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model.
    Davison AP; Feng J; Brown D
    J Neurophysiol; 2003 Sep; 90(3):1921-35. PubMed ID: 12736241
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Suckling pheromone stimulation of a modified glomerular region in the developing rat olfactory bulb revealed by the 2-deoxyglucose method.
    Teicher MH; Stewart WB; Kauer JS; Shepherd GM
    Brain Res; 1980 Aug; 194(2):530-5. PubMed ID: 7388629
    [No Abstract]   [Full Text] [Related]  

  • 60. Electrophysiological correlates of stereotyped sniffing in rats injected with apomorphine.
    Vanderwolf CH; Szechtman H
    Pharmacol Biochem Behav; 1987 Feb; 26(2):299-304. PubMed ID: 3575354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.