These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 5239364)

  • 1. Studies on the permeability barrier to amino-acid penetration of the intestinal mucosa during incubation in vitroin a Na+-free buffer.
    Schlenker JD; Robinson JW
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1967; 294(2):169-81. PubMed ID: 5239364
    [No Abstract]   [Full Text] [Related]  

  • 2. The loss of intestinal transport capacity following preincubation in sodium-free media in vitro.
    Robinson JW
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1967; 294(2):182-200. PubMed ID: 5239365
    [No Abstract]   [Full Text] [Related]  

  • 3. Intestinal transport of sugar and aromatic amino acids in killifish, Fundulus heteroclitus.
    Huang KC; Rout WR
    Am J Physiol; 1967 Apr; 212(4):799-803. PubMed ID: 6024442
    [No Abstract]   [Full Text] [Related]  

  • 4. K+ - and Na+ -gradient-dependent transport of L-phenylalanine by mouse intestinal brush border membrane vesicles.
    Berteloot A; Khan AH; Ramaswamy K
    Biochim Biophys Acta; 1982 Oct; 691(2):321-31. PubMed ID: 6291610
    [No Abstract]   [Full Text] [Related]  

  • 5. Active transport of amino acids and sugars.
    Curran PF
    Arch Intern Med; 1972 Feb; 129(2):258-69. PubMed ID: 5058550
    [No Abstract]   [Full Text] [Related]  

  • 6. The columnar epithelial cell of the small intestine: digestion and transport. II.
    Gardner JD; Brown MS; Laster L
    N Engl J Med; 1970 Dec; 283(23):1264-71. PubMed ID: 4920343
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of Na+-stimulated glucose transport function and perturbation of intestinal microvillus membrane vesicles by ethanol and acetaldehyde.
    Tillotson LG; Carter EA; Inui KI; Isselbacher KJ
    Arch Biochem Biophys; 1981 Apr; 207(2):360-70. PubMed ID: 7247410
    [No Abstract]   [Full Text] [Related]  

  • 8. Transcellular mechanisms of amino acid uptake by distal rat ileum in situ.
    Bikhazi AB; Abu Salbi MN; Itani JH
    Comp Biochem Physiol A Comp Physiol; 1985; 80(1):5-9. PubMed ID: 2858291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+-independent transport of bipolar and cationic amino acids across the luminal membrane of the small intestine.
    Munck BG; Munck LK
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1060-8. PubMed ID: 9140002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of effect of intracellular sodium on phenylalanine and beta-methyl-glucoside influx into the guinea-pig enterocyte.
    Buclon M; Robinson JW; Sepúlveda FV
    J Physiol (Paris); 1979; 75(5):571-9. PubMed ID: 533874
    [No Abstract]   [Full Text] [Related]  

  • 11. The absorption of a mixture of amino acids by rat small intestine.
    Bronk JR; Leese HJ
    J Physiol; 1974 Aug; 241(1):271-86. PubMed ID: 4417529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug transport. V. Mechanism of potassium-ion inhibition of passive transfer of solutes across everted rat intestine.
    Mayersohn M; Gibaldi M; Grundhofer B
    J Pharm Sci; 1971 Dec; 60(12):1813-7. PubMed ID: 5157995
    [No Abstract]   [Full Text] [Related]  

  • 13. Calcium movements accompanying the transport of sugar or amino acid by rabbit enterocytes.
    Sepúlveda FV; Burton KA; Brown PD
    Biochim Biophys Acta; 1986 Mar; 856(1):185-7. PubMed ID: 3955033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of amino acid transport in rabbit intestine by p-chloromercuriphenyl sulfonic acid.
    Schaeffer JF; Preston RL; Curran PF
    J Gen Physiol; 1973 Aug; 62(2):131-46. PubMed ID: 4722564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical properties of a Na+-dependent phenylalanine transport in lizard (Lacerta galloti) duodenum.
    Bolaños A; Gomez T; Badía P; Lorenzo A
    Comp Biochem Physiol A Comp Physiol; 1986; 84(3):405-8. PubMed ID: 2874917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport across the intestinal mucosal cell: hierarchies of function.
    Parsons DS; Boyd CA
    Int Rev Cytol; 1972; 32():209-55. PubMed ID: 4554910
    [No Abstract]   [Full Text] [Related]  

  • 17. Fe59-amino acid complexes: are they intermediates in Fe59 absorption across intestinal mucosa?
    Manis J; Schachter D
    Proc Soc Exp Biol Med; 1965; 119(4):1185-7. PubMed ID: 4953717
    [No Abstract]   [Full Text] [Related]  

  • 18. Uptake of the components of phenylalanylphenylalanine and maltose by intestinal epithelium.
    Shoaf CR; Heizer WD; Caplow M
    Biochim Biophys Acta; 1980 Aug; 600(3):939-49. PubMed ID: 7407152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intestinal absorption of hexoses and amino acids: from apical cytosol to villus capillaries.
    Pappenheimer JR
    J Membr Biol; 2001 Dec; 184(3):233-9. PubMed ID: 11891547
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of the proton electrochemical gradient in the transepithelial absorption of amino acids by human intestinal Caco-2 cell monolayers.
    Thwaites DT; McEwan GT; Simmons NL
    J Membr Biol; 1995 Jun; 145(3):245-56. PubMed ID: 7563025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.