These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 5244285)

  • 1. Hydrolysis of levan by human plaque streptococci.
    DaCosta T; Gibbons RJ
    Arch Oral Biol; 1968 Jun; 13(6):609-17. PubMed ID: 5244285
    [No Abstract]   [Full Text] [Related]  

  • 2. A novel phosphotransferase system of Streptococcus mutans is responsible for transport of carbohydrates with α-1,3 linkage.
    Ajdic D; Chen Z
    Mol Oral Microbiol; 2013 Apr; 28(2):114-28. PubMed ID: 23193985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Streptococcus mutans biofilm formation by Streptococcus salivarius FruA.
    Ogawa A; Furukawa S; Fujita S; Mitobe J; Kawarai T; Narisawa N; Sekizuka T; Kuroda M; Ochiai K; Ogihara H; Kosono S; Yoneda S; Watanabe H; Morinaga Y; Uematsu H; Senpuku H
    Appl Environ Microbiol; 2011 Mar; 77(5):1572-80. PubMed ID: 21239559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays.
    Ajdić D; Pham VT
    J Bacteriol; 2007 Jul; 189(14):5049-59. PubMed ID: 17496079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of fructosyltransferase and levanase-sucrase of Actinomyces naeslundii in fructan and sucrose metabolism.
    Bergeron LJ; Burne RA
    Infect Immun; 2001 Sep; 69(9):5395-402. PubMed ID: 11500409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Streptococcus mutans fructosyltransferase (ftf) and glucosyltransferase (gtfBC) operon fusion strains in continuous culture.
    Wexler DL; Hudson MC; Burne RA
    Infect Immun; 1993 Apr; 61(4):1259-67. PubMed ID: 8454329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic analysis of fructan-hyperproducing strains of Streptococcus mutans.
    Kiska DL; Macrina FL
    Infect Immun; 1994 Jul; 62(7):2679-86. PubMed ID: 7911782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of metabolic inhibitors on extracellular fructosyltransferase production in Actinomyces viscosus.
    Chak W; Kuramitsu HK
    Infect Immun; 1981 Dec; 34(3):930-7. PubMed ID: 7333676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of cell-associated fructosyltransferase in Streptococcus salivarius.
    Jacques NA; Wittenberger CL
    J Bacteriol; 1981 Dec; 148(3):912-8. PubMed ID: 7309680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and properties of levanase from Streptococcus salivarius KTA-19.
    Takahashi N; Mizuno F; Takamori K
    Infect Immun; 1983 Oct; 42(1):231-6. PubMed ID: 6618666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical isolates of Streptococcus mutans serotype c with altered colony morphology due to fructan synthesis.
    Okahashi N; Asakawa H; Koga T; Masuda N; Hamada S
    Infect Immun; 1984 Jun; 44(3):617-22. PubMed ID: 6233225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diminished virulence of glucan synthesis-defective mutants of Streptococcus mutans.
    Tanzer JM; Freedman ML; Fitzgerald RJ; Larson RH
    Infect Immun; 1974 Jul; 10(1):197-203. PubMed ID: 4842127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential utilization of the glucosyl moiety of sucrose by a cariogenic strain of Streptococcus mutans.
    Schachtele CF; Loken AE; Knudson DJ
    Infect Immun; 1972 Apr; 5(4):531-6. PubMed ID: 4636786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of specifically labeled sucrose for comparison of extracellular glucan and fructan metabolism by oral streptococci.
    Schachtele CF; Loken AE; Schmitt MK
    Infect Immun; 1972 Feb; 5(2):263-6. PubMed ID: 4564402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and preliminary characterization of exo-beta-D-fructosidase in Streptococcus salivarius KTA-19.
    Takahashi N; Mizuno F; Takamori K
    Infect Immun; 1985 Jan; 47(1):271-6. PubMed ID: 3965399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteria and yeasts as possible candidates for the production of inulinases and levanases.
    Fuchs A; de Bruijn JM; Niedeveld CJ
    Antonie Van Leeuwenhoek; 1985; 51(3):333-43. PubMed ID: 3911884
    [No Abstract]   [Full Text] [Related]  

  • 17. Protonmotive force driven 6-deoxyglucose uptake by the oral pathogen, Streptococcus mutans Ingbritt.
    Keevil CW; McDermid AS; Marsh PD; Ellwood DC
    Arch Microbiol; 1986 Nov; 146(2):118-24. PubMed ID: 3800553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of NADH oxidase in the oxidative inactivation of Streptococcus salivarius fructosyltransferase.
    Abbe K; Takahashi-Abbe S; Schoen RA; Wittenberger CL
    Infect Immun; 1986 Oct; 54(1):233-8. PubMed ID: 3759237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression, purification, and characterization of an exo-beta-D-fructosidase of Streptococcus mutans.
    Burne RA; Schilling K; Bowen WH; Yasbin RE
    J Bacteriol; 1987 Oct; 169(10):4507-17. PubMed ID: 3308844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in defining the cariogenicity of mutans streptococci: molecular genetic approaches.
    Kuramitsu HK
    Eur J Epidemiol; 1987 Sep; 3(3):257-60. PubMed ID: 2958360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.