These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 5245993)

  • 21. Developmental expression of alcohol dehydrogenases in maize.
    Scandalios JG; Felder MR
    Dev Biol; 1971 Aug; 25(4):641-54. PubMed ID: 5126202
    [No Abstract]   [Full Text] [Related]  

  • 22. Maize Adh1 as a monitor of environmental mutagens.
    Freeling M
    Environ Health Perspect; 1978 Dec; 27():91-7. PubMed ID: 367778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of expression of Adh genes in maize.
    Schwartz D
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):582-4. PubMed ID: 1061158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differences between maize inbreds in the activity level of the AP1-controlled acid phosphatase.
    Efron Y
    Biochem Genet; 1971 Feb; 5(1):33-44. PubMed ID: 5582062
    [No Abstract]   [Full Text] [Related]  

  • 25. Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize.
    Dennis ES; Gerlach WL; Pryor AJ; Bennetzen JL; Inglis A; Llewellyn D; Sachs MM; Ferl RJ; Peacock WJ
    Nucleic Acids Res; 1984 May; 12(9):3983-4000. PubMed ID: 6328449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insertion of an unstable element in an intervening sequence of maize Adh1 affects transcription but not processing.
    Rowland LJ; Strommer JN
    Proc Natl Acad Sci U S A; 1985 May; 82(9):2875-9. PubMed ID: 2986143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substrate specificity and regulation of the maize (Zea mays) leaf ADP: protein phosphotransferase catalysing phosphorylation/inactivation of pyruvate, orthophosphate dikinase.
    Budde RJ; Ernst SM; Chollet R
    Biochem J; 1986 Jun; 236(2):579-84. PubMed ID: 3019319
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant sterol biosynthesis: identification of a NADPH dependent sterone reductase involved in sterol-4 demethylation.
    Pascal S; Taton M; Rahier A
    Arch Biochem Biophys; 1994 Jul; 312(1):260-71. PubMed ID: 8031136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic analysis of the duplicated mitochondrial and cytosolic malate dehydrogenase isozymes in maize.
    McMillin DE; Scandalios JG
    Isozymes Curr Top Biol Med Res; 1983; 8():67-90. PubMed ID: 6629714
    [No Abstract]   [Full Text] [Related]  

  • 30. The Endoplasmic reticulum-associated maize GL8 protein is a component of the acyl-coenzyme A elongase involved in the production of cuticular waxes.
    Xu X; Dietrich CR; Lessire R; Nikolau BJ; Schnable PS
    Plant Physiol; 2002 Mar; 128(3):924-34. PubMed ID: 11891248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. E1 esterase isozymes of maize: on the nature of the gene-controlled variation.
    Schwartz D
    Proc Natl Acad Sci U S A; 1967 Aug; 58(2):568-75. PubMed ID: 5234324
    [No Abstract]   [Full Text] [Related]  

  • 32. Characterization of two GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development.
    Dietrich CR; Perera MA; D Yandeau-Nelson M; Meeley RB; Nikolau BJ; Schnable PS
    Plant J; 2005 Jun; 42(6):844-61. PubMed ID: 15941398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of maize inferred from sequence diversity of an Adh2 gene segment from archaeological specimens.
    Goloubinoff P; Pääbo S; Wilson AC
    Proc Natl Acad Sci U S A; 1993 Mar; 90(5):1997-2001. PubMed ID: 8446621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of antioxidant and anaerobic metabolism enzymes in providing tolerance to maize (Zea mays L.) seedlings against waterlogging.
    Chugh V; Kaur N; Gupta AK
    Indian J Biochem Biophys; 2011 Oct; 48(5):346-52. PubMed ID: 22165294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of monofunctional aspartate kinase genes in maize and their relationship with free amino acid content in the endosperm.
    Wang X; Lopez-Valenzuela JA; Gibbon BC; Gakiere B; Galili G; Larkins BA
    J Exp Bot; 2007; 58(10):2653-60. PubMed ID: 17545223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple Pesticides Detoxification Function of Maize (Zea mays) GST34.
    Li D; Xu L; Pang S; Liu Z; Zhao W; Wang C
    J Agric Food Chem; 2017 Mar; 65(9):1847-1853. PubMed ID: 28221787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tissue localization of cytokinin dehydrogenase in maize: possible involvement of quinone species generated from plant phenolics by other enzymatic systems in the catalytic reaction.
    Galuszka P; Frébortová J; Luhová L; Bilyeu KD; English JT; Frébort I
    Plant Cell Physiol; 2005 May; 46(5):716-28. PubMed ID: 15746157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation of cytokinins by maize cytokinin dehydrogenase is mediated by free radicals generated by enzymatic oxidation of natural benzoxazinones.
    Frébortová J; Novák O; Frébort I; Jorda R
    Plant J; 2010 Feb; 61(3):467-81. PubMed ID: 19912568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response of Chinese wampee axes and maize embryos to dehydration at different rates.
    Huang H; Song SQ; Wu XJ
    J Integr Plant Biol; 2009 Jan; 51(1):67-74. PubMed ID: 19166496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transposon-induced promoter scrambling: a mechanism for the evolution of new alleles.
    Kloeckener-Gruissem B; Freeling M
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1836-40. PubMed ID: 7892187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.