These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 5250122)

  • 1. A general method of detecting additive, dominance and epistatic variation for metrical traits.
    Kearsey MJ; Jinks JL
    Heredity (Edinb); 1968 Aug; 23(3):403-9. PubMed ID: 5250122
    [No Abstract]   [Full Text] [Related]  

  • 2. Dominance and epistatic genetic variances for litter size in pigs using genomic models.
    Vitezica ZG; Reverter A; Herring W; Legarra A
    Genet Sel Evol; 2018 Dec; 50(1):71. PubMed ID: 30577727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-additive genetic variation in growth, carcass and fertility traits of beef cattle.
    Bolormaa S; Pryce JE; Zhang Y; Reverter A; Barendse W; Hayes BJ; Goddard ME
    Genet Sel Evol; 2015 Apr; 47(1):26. PubMed ID: 25880217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dominance models with method R for stature of Holsteins.
    Misztal I; Lawlor TJ; Fernando RL
    J Dairy Sci; 1997 May; 80(5):975-8. PubMed ID: 9178138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic models for the analysis of data from the families of identical twins.
    Nance WE; Corey LA
    Genetics; 1976 Aug; 83(4):811-26. PubMed ID: 986976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pedigree-based estimation of covariance between dominance deviations and additive genetic effects in closed rabbit lines considering inbreeding and using a computationally simpler equivalent model.
    Fernández EN; Legarra A; Martínez R; Sánchez JP; Baselga M
    J Anim Breed Genet; 2017 Jun; 134(3):184-195. PubMed ID: 28508486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of additive and nonadditive genetic variances in Hereford, Gelbvieh, and Charolais by Method R.
    Duangjinda M; Bertrand JK; Misztal I; Druet T
    J Anim Sci; 2001 Dec; 79(12):2997-3001. PubMed ID: 11811452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of inbreeding depression, non-inbred dominance deviations and random year-season effect in genetic trends for prolificacy in closed rabbit lines.
    Fernández EN; Sánchez JP; Martínez R; Legarra A; Baselga M
    J Anim Breed Genet; 2017 Dec; 134(6):441-452. PubMed ID: 28685498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The change in quantitative genetic variation with inbreeding.
    Van Buskirk J; Willi Y
    Evolution; 2006 Dec; 60(12):2428-34. PubMed ID: 17263106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution of dominance to the understanding of quantitative genetic variation.
    Wellmann R; Bennewitz J
    Genet Res (Camb); 2011 Apr; 93(2):139-54. PubMed ID: 21481291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of dominance variance in purebred Yorkshire swine.
    Culbertson MS; Mabry JW; Misztal I; Gengler N; Bertrand JK; Varona L
    J Anim Sci; 1998 Feb; 76(2):448-51. PubMed ID: 9498351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental sizes for detecting dominance variation.
    Kearsey MJ
    Heredity (Edinb); 1970 Nov; 25(4):529-42. PubMed ID: 5286379
    [No Abstract]   [Full Text] [Related]  

  • 13. Production traits of Holstein cattle: estimation of nonadditive genetic variance components and inbreeding depression.
    Miglior F; Burnside EB; Kennedy BW
    J Dairy Sci; 1995 May; 78(5):1174-80. PubMed ID: 7622728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of full sibs on additive breeding values under the dominance model for stature in United States Holsteins.
    Varona L; Misztal I; Bertrand JK; Lawlor TJ
    J Dairy Sci; 1998 Apr; 81(4):1126-35. PubMed ID: 9594402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epistatic analysis of carcass characteristics in pigs reveals genomic interactions between quantitative trait loci attributable to additive and dominance genetic effects.
    Duthie C; Simm G; Doeschl-Wilson A; Kalm E; Knap PW; Roehe R
    J Anim Sci; 2010 Jul; 88(7):2219-34. PubMed ID: 20228239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of dominance, regular inbreeding and sampling design on Q(ST), an estimator of population differentiation for quantitative traits.
    Goudet J; Büchi L
    Genetics; 2006 Feb; 172(2):1337-47. PubMed ID: 16322514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint modeling of additive and non-additive (genetic line) effects in multi-environment trials.
    Oakey H; Verbyla AP; Cullis BR; Wei X; Pitchford WS
    Theor Appl Genet; 2007 May; 114(8):1319-32. PubMed ID: 17426958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An additive-dominance model to determine chromosomal effects in chromosome substitution lines and other gemplasms.
    Wu J; Jenkins JN; McCarty JC; Saha S; Stelly DM
    Theor Appl Genet; 2006 Feb; 112(3):391-9. PubMed ID: 16341682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthogonal Estimates of Variances for Additive, Dominance, and Epistatic Effects in Populations.
    Vitezica ZG; Legarra A; Toro MA; Varona L
    Genetics; 2017 Jul; 206(3):1297-1307. PubMed ID: 28522540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis.
    Kusterer B; Muminovic J; Utz HF; Piepho HP; Barth S; Heckenberger M; Meyer RC; Altmann T; Melchinger AE
    Genetics; 2007 Apr; 175(4):2009-17. PubMed ID: 17287529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.