These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 5253268)

  • 1. Studies on the regulation of one-carbon metabolism. The effects of folate concentration in the growth medium on the activity of three folate-dependent enzymes in Lactobacillus casei.
    Ohara O; Silber R
    J Biol Chem; 1969 Apr; 244(8):1988-93. PubMed ID: 5253268
    [No Abstract]   [Full Text] [Related]  

  • 2. Induction of the dihydrofolate reductase of Streptococcus faecium var. Durans by folic acid and by some of its derivatives.
    Bloch A
    Biochim Biophys Acta; 1970 Feb; 201(2):323-33. PubMed ID: 5309275
    [No Abstract]   [Full Text] [Related]  

  • 3. Cobamides and ribonucleotide reduction. 3. Factors influencing the level of cobamide-dependent ribonucleoside triphosphate reductase in Lactobacillus leichmannii.
    Ghambeer RK; Blakley RL
    J Biol Chem; 1966 Oct; 241(20):4710-6. PubMed ID: 5926177
    [No Abstract]   [Full Text] [Related]  

  • 4. Resistance to inhibitors of dihydrofolate reductase in strains of Lactobacillus casei and Proteus vulgaris.
    Singer S; Elion GB; Hitchings GH
    J Gen Microbiol; 1966 Feb; 42(2):185-96. PubMed ID: 5912585
    [No Abstract]   [Full Text] [Related]  

  • 5. Action of thiamine on protein and nucleic acid metabolism, III. Transketolase activity of Lactobacillus viridescens during thiamine starvation.
    Böhm M; Hess B; Averkamp KH; Kersten W
    Hoppe Seylers Z Physiol Chem; 1973 Apr; 354(4):453-61. PubMed ID: 4154272
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of dihydrofolate reductase and other folate-requiring enzymes.
    Bertino JR; Hillcoat BL
    Adv Enzyme Regul; 1968; 6():335-49. PubMed ID: 4888607
    [No Abstract]   [Full Text] [Related]  

  • 7. Control of one-carbon metabolism in a methionine-B12 auxotroph of Escherichia coli.
    Taylor RT; Dickerman H; Weissbach H
    Arch Biochem Biophys; 1966 Nov; 117(2):405-12. PubMed ID: 5339713
    [No Abstract]   [Full Text] [Related]  

  • 8. Enzyme increase by folate and methotrexate in cultured mammalian cells.
    Hillcoat BL; Marshall L
    Can J Biochem; 1974 Dec; 52(12):1132-6. PubMed ID: 4447902
    [No Abstract]   [Full Text] [Related]  

  • 9. Mammalian folate metabolism. Regulation of folate interconversion enzymes.
    Rowe PB; Lewis GP
    Biochemistry; 1973 May; 12(10):1862-9. PubMed ID: 4704474
    [No Abstract]   [Full Text] [Related]  

  • 10. Studies on the tetrahydrofolic acid dependent enzyme system in human leukocytes.
    Grignani F; Martelli M; Tonato M; Colonna A
    Acta Haematol; 1965 Aug; 34(2):72-87. PubMed ID: 4953809
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of testosterone on the metabolism of folate coenzymes in the rat.
    Rovinetti C; Bovina C; Tolomelli B; Marchetti M
    Biochem J; 1972 Jan; 126(2):291-4. PubMed ID: 5071175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute effects of testosterone propionate on folate coenzyme synthesis in the rat.
    Bovina C; Tolomelli B; Rovinetti C; Marchetti M
    J Endocrinol; 1972 Sep; 54(3):457-64. PubMed ID: 5071367
    [No Abstract]   [Full Text] [Related]  

  • 13. Action of diastereoisomers of tetrahydrohomofolate on the growth of Lactobacillus casei.
    Kisliuk RL; Gaumont Y
    Ann N Y Acad Sci; 1971 Nov; 186():438-43. PubMed ID: 5002438
    [No Abstract]   [Full Text] [Related]  

  • 14. Time-course studies on the effects of oestradiol administration on the activity of some folate-metabolizing enzymes in chicken liver.
    Burns RA; Jackson N
    Comp Biochem Physiol B; 1982; 71(3):351-5. PubMed ID: 7067401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Regulation of dihydrofolic acid reductase synthesis in synchronously growing yeast cells].
    Scholz K; Jaenicke L
    Eur J Biochem; 1968 May; 4(4):448-57. PubMed ID: 4173461
    [No Abstract]   [Full Text] [Related]  

  • 16. FORMATION OF FOLATE ENZYMES DURING THE GROWTH CYCLE OF BACTERIA. 3. CHANGES IN TETRAHYDROFOLATE DEHYDROGENASE ACTIVITY DURING THE ACTIVE GROWTH PHASES OF STREPTOCOCCUS THERMOPHILUS AND LACTOBACILLUS ARABINOSUS.
    NURMIKKO V; SOINI J; AAERIMAA O
    Acta Chem Scand; 1965; 19():129-34. PubMed ID: 14280837
    [No Abstract]   [Full Text] [Related]  

  • 17. Beta-aspartylhydroxamic acid: its action as a feedback inhibitor and a repressor of asparagine synthetase in Lactobacillus arabinosus.
    Norton SJ; Chen YT
    Arch Biochem Biophys; 1969 Feb; 129(2):560-6. PubMed ID: 4304212
    [No Abstract]   [Full Text] [Related]  

  • 18. Diurnal variations of liver folate metabolism in rats maintained under controlled feeding schedules.
    Barbiroli B; Bovina C; Tolomelli B; Marchetti M
    Proc Soc Exp Biol Med; 1974 Feb; 145(2):645-7. PubMed ID: 4814158
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of orotic acid on dihydrofolate dehydrogenase and on tetrahydrofolate-dependent enzymes in the chick liver.
    Pasquali P; Landi L; Caldarera CM; Marchetti M
    Biochim Biophys Acta; 1968 Jun; 158(3):482-4. PubMed ID: 5241964
    [No Abstract]   [Full Text] [Related]  

  • 20. Repression of acetyl-coenzyme A carboxylase by unsaturated fatty acids: relationship to coenzyme repression.
    Birnbaum J
    J Bacteriol; 1970 Oct; 104(1):171-6. PubMed ID: 5473885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.