These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 5253475)
1. Multiple molecular forms of L-malate dehydrogenase in sea-urchin eggs and embryos. Villee CA Ann N Y Acad Sci; 1968 Jun; 151(1):222-31. PubMed ID: 5253475 [No Abstract] [Full Text] [Related]
2. L-Malate dehydrogenase activity and protein synthesis in sea urchin embryos. Billiar RB; Zelewski L; Villee CA Dev Biol; 1966 Apr; 13(2):282-95. PubMed ID: 5960159 [No Abstract] [Full Text] [Related]
3. L-malate dehydrogenase in the development of the sea urchin Strongylocentrotus purpuratus. Ozaki H; Whiteley AH Dev Biol; 1970 Feb; 21(1):196-215. PubMed ID: 5445758 [No Abstract] [Full Text] [Related]
4. [The changes of aspartate-aminotransferase activity in the early development of sea urchin and their independence of macromolecular synthesis]. Botvinnik NM; Neĭfakh AA Biokhimiia; 1969; 34(3):643-6. PubMed ID: 5387654 [No Abstract] [Full Text] [Related]
5. MALATE DEHYDROGENASE: MULTIPLE FORMS IN SEPARATED BLASTOMERES OF SEA URCHIN EMBRYOS. MOORE RO; VILLEE CA Science; 1963 Oct; 142(3590):389-90. PubMed ID: 14056704 [TBL] [Abstract][Full Text] [Related]
6. Changes in malate dehydrogenase isozyme patterns in Arbacia embryos during early development. Francesconi RP; Villee CA Comp Biochem Physiol; 1968 May; 25(2):747-50. PubMed ID: 5653729 [No Abstract] [Full Text] [Related]
7. [Effect of inhibitors on changes in cytochrome oxidase activity in early development of the sea urchin]. Dontsova GV; Neĭfakh AA Dokl Akad Nauk SSSR; 1966 Mar; 167(1):215-8. PubMed ID: 4297242 [No Abstract] [Full Text] [Related]
8. Physical heterogeneity of hatching enzyme of the sea urchin, Strongylocentrotus purpuratus. Barrett D; Edwards BF; Wood DB; Lane DJ Arch Biochem Biophys; 1971 Mar; 143(1):261-8. PubMed ID: 5561747 [No Abstract] [Full Text] [Related]
9. Control of enzyme synthesis in early sea urchin development: aryl sulfatase activity in normal and hybrid embryos. Fedecka-Bruner B; Anderson M; Epel D Dev Biol; 1971 Aug; 25(4):655-71. PubMed ID: 5126203 [No Abstract] [Full Text] [Related]
10. Malic dehydrogenase isozymes: distribution in developing nucleate and anucleate halves of sea urchin eggs. Patton GW; Mets L; Villee CA Science; 1967 Apr; 156(3773):400-1. PubMed ID: 5609825 [TBL] [Abstract][Full Text] [Related]
11. Thymidine kinase, thymidylate kinase and 32P and [14C] thymidine incorporation into DNA during early embryogenesis of the sea urchin. Nagano H; Mano Y Biochim Biophys Acta; 1968 May; 157(3):546-57. PubMed ID: 5665902 [No Abstract] [Full Text] [Related]
12. dCMP-aminohydrolase activity during early sea urchin development. An example of negative enzyme control during embryogenesis. De Petrocellis B; Pratibha M; Maharajan V Exp Cell Res; 1984 May; 152(1):188-94. PubMed ID: 6201371 [TBL] [Abstract][Full Text] [Related]
13. Poly U stimulation of single ribosomes and of ribosomes engaged in polysomes of sea urchin eggs and embryos. Vittorelli ML; Caffarelli-Mormino I; Monroy A Biochim Biophys Acta; 1969 Aug; 186(2):408-11. PubMed ID: 5822840 [No Abstract] [Full Text] [Related]
14. [Short term action of actinomycin D and puromycin on the synthesis of protein and RNA in the early development of sea urchin eggs]. Krigsgaber MR; Ivanchik TA; Neĭfakh AA Biokhimiia; 1968; 33(6):1214-21. PubMed ID: 5751504 [No Abstract] [Full Text] [Related]
15. Aminoacyl-sRNA synthetases as possible regulators of protein synthesis in the embryo of the sea urchin Paracentrotus lividus. Ceccarini C; Maggio R; Barbata G Proc Natl Acad Sci U S A; 1967 Dec; 58(6):2235-9. PubMed ID: 5242200 [No Abstract] [Full Text] [Related]
16. Patterns and rates of protein synthesis in sea urchin embryos. I. Uptake and incorporation of amino acids during the first cleavage cycle. Fry BJ; Gross PR Dev Biol; 1970 Feb; 21(1):105-24. PubMed ID: 5445756 [No Abstract] [Full Text] [Related]