These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 525671)
1. Lipid domains in biological membranes: their structural and functional perturbation by free fatty acids and the regulation of receptor mobility. Co-presidential address. Karnovsky MJ Am J Pathol; 1979 Nov; 97(2):212-21. PubMed ID: 525671 [TBL] [Abstract][Full Text] [Related]
2. Model for capping derived from inhibition of surface receptor capping by free fatty acids. Klausner RD; Bhalla DK; Dragsten P; Hoover RL; Karnovsky MJ Proc Natl Acad Sci U S A; 1980 Jan; 77(1):437-41. PubMed ID: 6928636 [TBL] [Abstract][Full Text] [Related]
3. A conformational model for the action of general anesthetics at the membrane level. II. Experimental observations on the effects of anesthetics on lipid fluidity and lipid protein interactions. Lenaz G; Mazzanti L; Curatola G; Bertoli E; Bigi A; Zolese G Ital J Biochem; 1978; 27(6):401-30. PubMed ID: 755801 [TBL] [Abstract][Full Text] [Related]
4. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes. Wiśniewska A; Draus J; Subczynski WK Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369 [TBL] [Abstract][Full Text] [Related]
5. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes. Tiriveedhi V; Butko P Biochemistry; 2007 Mar; 46(12):3888-95. PubMed ID: 17338552 [TBL] [Abstract][Full Text] [Related]
6. Elucidation of biphasic alterations on acetylcholinesterase (AChE) activity and membrane fluidity in the structure-functional effects of tetracaine on AChE-associated membrane vesicles. Chen CH; Zuklie BM; Roth LG Arch Biochem Biophys; 1998 Mar; 351(1):135-40. PubMed ID: 9500847 [TBL] [Abstract][Full Text] [Related]
7. Comparisons of the interaction of propranolol and timolol with model and biological membrane systems. Herbette L; Katz AM; Sturtevant JM Mol Pharmacol; 1983 Sep; 24(2):259-69. PubMed ID: 6888369 [TBL] [Abstract][Full Text] [Related]
8. Location of diphenylhexatriene (DPH) and its derivatives within membranes: comparison of different fluorescence quenching analyses of membrane depth. Kaiser RD; London E Biochemistry; 1998 Jun; 37(22):8180-90. PubMed ID: 9609714 [TBL] [Abstract][Full Text] [Related]
9. Antagonizing potencies of saturated and unsaturated long-chain free fatty acids to isoflurane in goldfish. Hanada R; Tatara T; Iwao Y J Anesth; 2004; 18(2):89-93. PubMed ID: 15127255 [TBL] [Abstract][Full Text] [Related]
10. The position of the double bond in monounsaturated free fatty acids is essential for the inhibition of the nicotinic acetylcholine receptor. Perillo VL; Fernández-Nievas GA; Vallés AS; Barrantes FJ; Antollini SS Biochim Biophys Acta; 2012 Nov; 1818(11):2511-20. PubMed ID: 22699039 [TBL] [Abstract][Full Text] [Related]
11. Perfluorinated fatty acids alter merocyanine 540 dye binding to plasma membranes. Levitt D; Liss A J Toxicol Environ Health; 1987; 20(3):303-16. PubMed ID: 3820341 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of muscarinic acetylcholine receptors in brain synaptic membranes by free fatty acids. Evaluation of the role of lipid phase. Okun IM; Merezhinskaya NV; Rakovich AA; Volkovets TM; Aksentsev SL; Konev SV Gen Physiol Biophys; 1986 Jun; 5(3):243-58. PubMed ID: 3758660 [TBL] [Abstract][Full Text] [Related]
13. Free fatty acid perturbation of transmembrane signaling in cytotoxic T lymphocytes. Richieri GV; Kleinfeld AM J Immunol; 1989 Oct; 143(7):2302-10. PubMed ID: 2789260 [TBL] [Abstract][Full Text] [Related]
14. Molecular mobility on the cell surface. Webb WW; Barak LS; Tank DW; Wu ES Biochem Soc Symp; 1981; (46):191-205. PubMed ID: 7039623 [TBL] [Abstract][Full Text] [Related]
15. Short term exposure to cis unsaturated free fatty acids inhibits degranulation of cytotoxic T lymphocytes. Richieri GV; Mescher MF; Kleinfeld AM J Immunol; 1990 Jan; 144(2):671-7. PubMed ID: 2295805 [TBL] [Abstract][Full Text] [Related]
16. Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes. Rossi C; Homand J; Bauche C; Hamdi H; Ladant D; Chopineau J Biochemistry; 2003 Dec; 42(51):15273-83. PubMed ID: 14690437 [TBL] [Abstract][Full Text] [Related]
17. Activation of the neutrophil NADPH-oxidase by free fatty acids requires the ionized carboxyl group and partitioning into membrane lipid. Steinbeck MJ; Robinson JM; Karnovsky MJ J Leukoc Biol; 1991 Apr; 49(4):360-8. PubMed ID: 1848271 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamics of the membrane insertion process of the M13 procoat protein, a lipid bilayer traversing protein containing a leader sequence. Soekarjo M; Eisenhawer M; Kuhn A; Vogel H Biochemistry; 1996 Jan; 35(4):1232-41. PubMed ID: 8573578 [TBL] [Abstract][Full Text] [Related]
19. Effects of the cannabinoids on physical properties of brain membranes and phospholipid vesicles: fluorescence studies. Hillard CJ; Harris RA; Bloom AS J Pharmacol Exp Ther; 1985 Mar; 232(3):579-88. PubMed ID: 2983062 [TBL] [Abstract][Full Text] [Related]
20. Interaction modes of long-chain fatty acids in dipalmitoylphosphatidylcholine bilayer membrane: contrast to mode of inhalation anesthetics. Nishimoto M; Hata T; Goto M; Tamai N; Kaneshina S; Matsuki H; Ueda I Chem Phys Lipids; 2009 Apr; 158(2):71-80. PubMed ID: 19428351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]