These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 5256967)

  • 1. Hückel and extended Hückel calculations on bonding in phosphate diesters.
    Collin RL
    Ann N Y Acad Sci; 1969 May; 158(1):50-64. PubMed ID: 5256967
    [No Abstract]   [Full Text] [Related]  

  • 2. A method for quantitative determination of phosphonate phosphorus in the presence of organic anc inorganic phosphates.
    Aalbers JA; Bieber LL
    Anal Biochem; 1968 Sep; 24(3):443-7. PubMed ID: 4301971
    [No Abstract]   [Full Text] [Related]  

  • 3. Heterocyclic systems bearing phosphorus substituents. synthesis and chemistry.
    Redmore D
    Chem Rev; 1971 Jun; 71(3):314-7. PubMed ID: 5158533
    [No Abstract]   [Full Text] [Related]  

  • 4. Arrangement of the phosphate-and metal-binding subsites of phosphoglucomutase. Intersubsite relationships by means of inhibition patterns.
    Ray WJ; Mildvan AS; Long JW
    Biochemistry; 1973 Sep; 12(19):3724-32. PubMed ID: 4788309
    [No Abstract]   [Full Text] [Related]  

  • 5. Charge-spatial models: cis- and trans-3- and -4-Substituted cyclohexyl phosphates as analogs of 2'-deoxyuridine 5'-phosphate.
    Mertes MP; Coats EA
    J Med Chem; 1969 Sep; 12(5):828-32. PubMed ID: 4897901
    [No Abstract]   [Full Text] [Related]  

  • 6. [PHOSPHORIC ACIDS AND PHOSPHONIC ACIDS: ANALOGIES AND DIFFERENCES IN THEIR BEHAVIOR].
    CHERBULIEZ E; RABINOWITZ J
    Pharm Acta Helv; 1963 Dec; 38():854-60. PubMed ID: 14208613
    [No Abstract]   [Full Text] [Related]  

  • 7. The tetrahymena ribozyme cleaves a 5'-methylene phosphonate monoester approximately 10(2)-fold faster than a normal phosphate diester: implications for enzyme catalysis of phosphoryl transfer reactions.
    Liao X; Anjaneyulu PS; Curley JF; Hsu M; Boehringer M; Caruthers MH; Piccirilli JA
    Biochemistry; 2001 Sep; 40(37):10911-26. PubMed ID: 11551186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkylation of phosphates and stability of phosphate triesters in DNA.
    Bannon P; Verly W
    Eur J Biochem; 1972 Nov; 31(1):103-11. PubMed ID: 4344908
    [No Abstract]   [Full Text] [Related]  

  • 9. [Phosphorylated polysaccharides in nature].
    Narumi K; Ysumita T
    Seikagaku; 1968 Jun; 40(6):235-48. PubMed ID: 4302301
    [No Abstract]   [Full Text] [Related]  

  • 10. The effects of diphosphonates on the exchangeable and non-exchangeable calcium and phosphate of hydroxyapatite.
    Robertson WG; Morgan DB; Fleisch H; Francis MD
    Biochim Biophys Acta; 1971 Feb; 261(2):517-25. PubMed ID: 4335549
    [No Abstract]   [Full Text] [Related]  

  • 11. Why nature chose phosphates.
    Westheimer FH
    Science; 1987 Mar; 235(4793):1173-8. PubMed ID: 2434996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hydrolysis of phosphate esters of alpha-hydroxy acids catalyzed by molybdate.
    Rose ZB; Pizer LI
    J Biol Chem; 1968 Sep; 243(18):4806-9. PubMed ID: 5687723
    [No Abstract]   [Full Text] [Related]  

  • 13. N-alkylation of purines with alkyl esters of phosphorus oxy acids.
    Yamauchi K; Hayashi M; Kinoshita M
    J Org Chem; 1975 Feb; 40(3):385-6. PubMed ID: 1133621
    [No Abstract]   [Full Text] [Related]  

  • 14. Carbohydrate phosphoric esters; the alkaline hydrolysis of alpha-methylglucopyranoside-6-phosphate, methylglucofuranoside-3-phosphates iso-propylidene glucofuranose-3- and -6-phosphates.
    PERCIVAL EE; PERCIVAL EG
    J Chem Soc; 1945 Dec; ():874-6. PubMed ID: 21010909
    [No Abstract]   [Full Text] [Related]  

  • 15. Studies on phospholipase A and its zymogen from porcine pancreas. IV. The influence of chemical modification of the lecithin structure on substrate properties.
    Bonsen PP; de Haas GH; Pieterson WA; van Deenen LL
    Biochim Biophys Acta; 1972 Jul; 270(3):364-82. PubMed ID: 5064927
    [No Abstract]   [Full Text] [Related]  

  • 16. Oxidative substitution of boranephosphonate diesters as a route to post-synthetically modified DNA.
    Paul S; Roy S; Monfregola L; Shang S; Shoemaker R; Caruthers MH
    J Am Chem Soc; 2015 Mar; 137(9):3253-64. PubMed ID: 25679520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphonic acids and esters. VIII. Facile hydrolytic cleavage of carbon-phosphorus bonds in pyrrylphosphonates and phosphine oxides.
    Griffin CE; Peller RP; Peters JA
    J Org Chem; 1965 Jan; 30(1):91-6. PubMed ID: 5870719
    [No Abstract]   [Full Text] [Related]  

  • 18. [Amino acid effect on the exchange of terminal phosphate of ribonucleoside-5-diphosphate catalyzed by polynucleotide phosphorylase].
    Debov SS; Del'vig AA; Mardashev SR; Pavlova NA; Rebrov LB
    Vopr Med Khim; 1969; 15(4):431-4. PubMed ID: 5351656
    [No Abstract]   [Full Text] [Related]  

  • 19. Model reactions for catalysis of phosphate and sulfate transfer.
    Benkovic SJ
    Ann N Y Acad Sci; 1971 Oct; 172(13):563-9. PubMed ID: 5291223
    [No Abstract]   [Full Text] [Related]  

  • 20. Recent advances in H-phosphonate chemistry. Part 1. H-phosphonate esters: synthesis and basic reactions.
    Sobkowski M; Kraszewski A; Stawinski J
    Top Curr Chem; 2015; 361():137-77. PubMed ID: 25370520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.