These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 5261029)

  • 1. Cross-bridge properties derived from muscle isotonic velocity transients.
    Podolsky RJ; Nolan AC; Zaveler SA
    Proc Natl Acad Sci U S A; 1969 Oct; 64(2):504-11. PubMed ID: 5261029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models in which many cross-bridges attach simultaneously can explain the filament movement per ATP split during muscle contraction.
    Barclay CJ
    Int J Biol Macromol; 2003 Sep; 32(3-5):139-47. PubMed ID: 12957310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding.
    Stehle R; Brenner B
    Biophys J; 2000 Mar; 78(3):1458-73. PubMed ID: 10692331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle.
    Thorson J; White DC
    Biophys J; 1969 Mar; 9(3):360-90. PubMed ID: 5780714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induced potential model for muscular contraction mechanism, including two attached states of myosin head.
    Mitsui T; Kumagai S; Chiba H; Yoshimura H; Ohshima H
    J Theor Biol; 1998 May; 192(1):35-41. PubMed ID: 9628837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling rigor cross-bridge patterns in muscle I. Initial studies of the rigor lattice of insect flight muscle.
    Haselgrove JC; Reedy MK
    Biophys J; 1978 Dec; 24(3):713-28. PubMed ID: 737284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geometrical factors influencing muscle force development. I. The effect of filament spacing upon axial forces.
    Schoenberg M
    Biophys J; 1980 Apr; 30(1):51-67. PubMed ID: 6894872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct tests of muscle cross-bridge theories: predictions of a Brownian dumbbell model for position-dependent cross-bridge lifetimes and step sizes with an optically trapped actin filament.
    Smith DA
    Biophys J; 1998 Dec; 75(6):2996-3007. PubMed ID: 9826619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the myosin step size from mechanical and kinetic data.
    Pate E; White H; Cooke R
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2451-5. PubMed ID: 8460156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The step-size distance in muscle contraction: properties and estimates.
    Worthington CR; Elliott GF
    Int J Biol Macromol; 1996 Dec; 19(4):287-94. PubMed ID: 9024905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometrical factors influencing muscle force development. II. Radial forces.
    Schoenberg M
    Biophys J; 1980 Apr; 30(1):69-77. PubMed ID: 6894873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of stress relaxation in cross-bridge systems: effect of a series elastic element.
    Luo Y; Cooke R; Pate E
    Am J Physiol; 1993 Jul; 265(1 Pt 1):C279-88. PubMed ID: 8338135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-induced translation model of myosin head motion along thin filament in muscle contraction.
    Mitsui T; Wakabayashi K; Tanaka H; Kobayashi T; Amemiya Y; Iwamoto H; Wang EZ; Hamanaka T; Sugi H
    Adv Exp Med Biol; 1988; 226():405-13. PubMed ID: 3407524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-induced structural changes in the myosin thick filament of skinned rabbit psoas muscle.
    Malinchik S; Xu S; Yu LC
    Biophys J; 1997 Nov; 73(5):2304-12. PubMed ID: 9370427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-bridge phosphorylation and regulation of latch state in smooth muscle.
    Hai CM; Murphy RA
    Am J Physiol; 1988 Jan; 254(1 Pt 1):C99-106. PubMed ID: 3337223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimum number of myosin motors accounting for shortening velocity under zero load in skeletal muscle.
    Fusi L; Percario V; Brunello E; Caremani M; Bianco P; Powers JD; Reconditi M; Lombardi V; Piazzesi G
    J Physiol; 2017 Feb; 595(4):1127-1142. PubMed ID: 27763660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze-fracture studies on the cross-bridge angle distribution at various states and the thin filament stiffness in single skinned frog muscle fibers.
    Suzuki S; Oshimi Y; Sugi H
    J Electron Microsc (Tokyo); 1993 Apr; 42(2):107-16. PubMed ID: 8350022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium muscle cross-bridge behavior. Theoretical considerations. II. Model describing the behavior of strongly-binding cross-bridges when both heads of myosin bind to the actin filament.
    Schoenberg M
    Biophys J; 1991 Sep; 60(3):679-89. PubMed ID: 1932554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.