These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 5261233)

  • 1. Observations on intramitochondrial pH and ion transport by the 5,5-dimethyl 2,4-oxazolidinedione (DMO) method.
    Addanki S; Sotos JF
    Ann N Y Acad Sci; 1969 Oct; 147(19):756-804. PubMed ID: 5261233
    [No Abstract]   [Full Text] [Related]  

  • 2. Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5,5-dimethyl-2,4-oxazolidinedione. I. Changes during respiration and adenosine triphosphate-dependent transport of Ca++, Mg++, and Zn++.
    Addanki A; Cahill FD; Sotos JF
    J Biol Chem; 1968 May; 243(9):2337-48. PubMed ID: 5648435
    [No Abstract]   [Full Text] [Related]  

  • 3. Ion transport by heart mitochondria. 23. The effects of lead on mitochondrial reactions.
    Scott KM; Hwang KM; Jurkowitz M; Brierley GP
    Arch Biochem Biophys; 1971 Dec; 147(2):557-67. PubMed ID: 4332722
    [No Abstract]   [Full Text] [Related]  

  • 4. The conformational basis of energy transduction in membrane systems. V. Measurement of configurational changes by light scattering.
    Harris RA; Asbell MA; Asai J; Jolly WW; Green DE
    Arch Biochem Biophys; 1969 Jul; 132(2):545-60. PubMed ID: 5797339
    [No Abstract]   [Full Text] [Related]  

  • 5. Uncoupling and charge transfer in submitochondrial particles.
    Montal M; Chance B; Lee CP
    Biochem Biophys Res Commun; 1969 Aug; 36(3):428-34. PubMed ID: 5822400
    [No Abstract]   [Full Text] [Related]  

  • 6. Ion transport by heart mitochondria. XXVI. Carrier-mediated anion transport by isolated beef heart mitochondria.
    Scott KM; Jurkowitz M; Brierley GP
    Arch Biochem Biophys; 1972 Dec; 153(2):682-94. PubMed ID: 4676907
    [No Abstract]   [Full Text] [Related]  

  • 7. Energy-linked alteration of mitochondrial permeability to anions.
    Brierley GP
    Biochem Biophys Res Commun; 1969 May; 35(3):396-402. PubMed ID: 5788496
    [No Abstract]   [Full Text] [Related]  

  • 8. Structural requirements in the uncoupling of oxidative phosphorylation by N,N'-bis(dichloroacetyl) diamines.
    Merola AJ; Hwang KM; Jurkowitz M; Brierley GP
    Biochem Pharmacol; 1971 Jul; 20(7):1393-403. PubMed ID: 5163079
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of mitochondrial energy-linked functions by arsenate. Evidence for a nonhydrolytic mode of inhibitor action.
    Mitchell RA; Chang BF; Huang CH; DeMaster EG
    Biochemistry; 1971 May; 10(11):2049-54. PubMed ID: 4327397
    [No Abstract]   [Full Text] [Related]  

  • 10. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 23. Preservation of energy coupling in submitochondrial particles lacking cytochrome oxidase.
    Arion WJ; Racker E
    J Biol Chem; 1970 Oct; 245(20):5186-94. PubMed ID: 4319234
    [No Abstract]   [Full Text] [Related]  

  • 11. Passive transport of 5,5-dimethyl-2, 4-oxazolidinedione into beef heart mitochondria.
    Addanki S; Cahill FD; Sotos JF
    Science; 1967 Mar; 155(3770):1678-9. PubMed ID: 6020290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy-linked ion translocation in submitochondrial particles. II. Properties of submitochondrial particles capable of Ca++ translocation.
    Christiansen RO; Steensland H; Loyter A; Saltzgaber J; Racker E
    J Biol Chem; 1969 Aug; 244(16):4428-36. PubMed ID: 4185156
    [No Abstract]   [Full Text] [Related]  

  • 13. The effects of Zn++ on the permeability of isolated heart mitochondria.
    Brierley GP
    Ann N Y Acad Sci; 1969 Oct; 147(19):842-5. PubMed ID: 5261238
    [No Abstract]   [Full Text] [Related]  

  • 14. Inhibition of respiration in submitochondrial particles by N,N'-dicyclohexylcarbodiimide: the effect of sodium, potassium, and antibiotics which alter membrane permeability.
    Beyer RE; Brinker KR; Crankshaw DL
    Can J Biochem; 1969 Feb; 47(2):117-24. PubMed ID: 4304574
    [No Abstract]   [Full Text] [Related]  

  • 15. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXI. Resolution of submitochondrial particles from bovine heart mitochondria with silicotungstate.
    Racker E; Horstman LL; Kling D; Fessenden-Raden JM
    J Biol Chem; 1969 Dec; 244(24):6668-74. PubMed ID: 4311918
    [No Abstract]   [Full Text] [Related]  

  • 16. Ion transport in heart mitochondria. 8. The effect of ethylenediaminetertraacetate on monovalent ion uptake.
    Settlemire CT; Hunter GR; Brierley GP
    Biochim Biophys Acta; 1968 Nov; 162(4):487-99. PubMed ID: 4973276
    [No Abstract]   [Full Text] [Related]  

  • 17. Ultrastructure of sonic and digitonin fragments from beef heart mitochondria.
    Malviya AN; Parsa B; Yodaiken RE; Elliott WB
    Biochim Biophys Acta; 1968 Aug; 162(2):195-209. PubMed ID: 4176215
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of oxidative phosphorylation by hydroxylamine in sonicated particles from beef-heart mitochondria.
    Wikström MK
    Biochim Biophys Acta; 1971 Apr; 234(1):16-27. PubMed ID: 4327077
    [No Abstract]   [Full Text] [Related]  

  • 19. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XIX. Purification and characterization of a new coupling factor (F5).
    Fessenden-Raden JM; Lange AJ; Dannenberg MA; Racker E
    J Biol Chem; 1969 Dec; 244(24):6656-61. PubMed ID: 4311916
    [No Abstract]   [Full Text] [Related]  

  • 20. Energy-driven Ca45 accumulation in submitochondrial particles.
    Loyter A; Saltzgaber J; Steensland H; Racker E
    Ann N Y Acad Sci; 1969 Oct; 147(19):846-8. PubMed ID: 5261239
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.