These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 5263018)

  • 61. Mechanistic implications of cyanide binding to carboxypeptidase B.
    Zisapel N; Sokolovsky M
    Int J Pept Protein Res; 1982 May; 19(5):470-9. PubMed ID: 7118416
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ester hydrolysis by a cyclodextrin dimer catalyst with a tridentate N,N',N''-zinc linking group.
    Tang SP; Zhou YH; Chen HY; Zhao CY; Mao ZW; Ji LN
    Chem Asian J; 2009 Aug; 4(8):1354-60. PubMed ID: 19579255
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Kinetic studies of carboxypeptidase Y. III. Action on ester, amide, and anilide substrates and the effects of some environmental factors.
    Bai Y; Hayashi R; Hata T
    J Biochem; 1975 Sep; 78(3):617-26. PubMed ID: 5415
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Peptidic mechanism-based inactivators for carboxypeptidase A.
    Ghosh SS; Wu YQ; Mobashery S
    J Biol Chem; 1991 May; 266(14):8759-64. PubMed ID: 2026592
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A mechanistic and kinetic study of the beta-lactone hydrolysis of Salinosporamide A (NPI-0052), a novel proteasome inhibitor.
    Denora N; Potts BC; Stella VJ
    J Pharm Sci; 2007 Aug; 96(8):2037-47. PubMed ID: 17554770
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Site-directed mutagenesis shows that tyrosine 248 of carboxypeptidase A does not play a crucial role in catalysis.
    Gardell SJ; Craik CS; Hilvert D; Urdea MS; Rutter WJ
    Nature; 1985 Oct 10-16; 317(6037):551-5. PubMed ID: 3840231
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Kinetic analysis by stopped-flow radiationless energy transfer studies: effect of anions on the activity of carboxypeptidase A.
    Williams AC; Auld DS
    Biochemistry; 1986 Jan; 25(1):94-100. PubMed ID: 3954997
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cryospectrokinetic characterization of intermediates in biochemical reactions: carboxypeptidase A.
    Auld DS; Galdes A; Geoghegan KF; Holmquist B; Martinelli RA; Vallee BL
    Proc Natl Acad Sci U S A; 1984 Aug; 81(16):5041-5. PubMed ID: 6591178
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Hippuryl-alpha-methylphenylalanine and hippuryl-alpha-methylphenyllactic acid as substrates for carboxypeptidase A. Syntheses, kinetic evaluation and mechanistic implication.
    Lee M; Kim DH
    Bioorg Med Chem; 2000 Apr; 8(4):815-23. PubMed ID: 10819170
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Full and partial deuterium solvent isotope effect studies of alpha-thrombin-catalyzed reactions of natural substrates.
    Zhang D; Kovach IM
    J Am Chem Soc; 2005 Mar; 127(11):3760-6. PubMed ID: 15771510
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fluxionate Lewis acidity of the Zn2+ ion in carboxypeptidase A.
    Mock WL; Freeman DJ; Aksamawati M
    Biochem J; 1993 Jan; 289 ( Pt 1)(Pt 1):185-93. PubMed ID: 8424757
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Expression and characterization of human pancreatic preprocarboxypeptidase A1 and preprocarboxypeptidase A2.
    Laethem RM; Blumenkopf TA; Cory M; Elwell L; Moxham CP; Ray PH; Walton LM; Smith GK
    Arch Biochem Biophys; 1996 Aug; 332(1):8-18. PubMed ID: 8806703
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Protease-catalyzed oligomerization of hydrophobic amino acid ethyl esters in homogeneous reaction media using l-phenylalanine as a model system.
    Viswanathan K; Omorebokhae R; Li G; Gross RA
    Biomacromolecules; 2010 Aug; 11(8):2152-60. PubMed ID: 20690722
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structure and conformation of the nitroxyl spin-label ethyl 3-(2,2,5,5-tetramethylpyrrolinyl-1-oxyl)-propen-2-oate determined by electron nuclear double resonance: comparison with the structure of a spin-label substrate of carboxypeptidase A.
    Mustafi D; Boisvert WE; Makinen MW
    Biopolymers; 1990 Jan; 29(1):45-55. PubMed ID: 2158361
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Detection of an anhydride intermediate in the carboxypeptidase A catalyzed hydrolysis of a peptide substrate by solid state NMR spectroscopy and its mechanistic implication.
    Lee HC; Ko YH; Baek SB; Kim DH
    Bioorg Med Chem Lett; 1998 Dec; 8(23):3379-84. PubMed ID: 9873738
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Intramolecular bifunctional catalysis of ester hydrolysis by metal ion and carboxylate in a carboxypeptidase model.
    Breslow R; McAllister C
    J Am Chem Soc; 1971 Dec; 93(25):7096-7. PubMed ID: 5133100
    [No Abstract]   [Full Text] [Related]  

  • 77. Positive cooperativity in the porcine carboxypeptidase B-catalyzed hydrolysis of neutral peptide substrates.
    Moore GJ; Benoiton NL
    Biochem Biophys Res Commun; 1972 May; 47(3):581-7. PubMed ID: 5064574
    [No Abstract]   [Full Text] [Related]  

  • 78. Intramolecular general base-catalyzed ester hydrolyses by the imidazolyl group.
    Komiyama M; Roesel TR; Bender ML
    Proc Natl Acad Sci U S A; 1977 Jan; 74(1):23-5. PubMed ID: 13364
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Use of directed mutagenesis to probe the role of tyrosine 198 in the catalytic mechanism of carboxypeptidase A.
    Gardell SJ; Hilvert D; Barnett J; Kaiser ET; Rutter WJ
    J Biol Chem; 1987 Jan; 262(2):576-82. PubMed ID: 3542991
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Amphipathic property of free thiol group contributes to an increase in the catalytic efficiency of carboxypeptidase Y.
    Mima J; Jung G; Onizuka T; Ueno H; Hayashi R
    Eur J Biochem; 2002 Jul; 269(13):3220-5. PubMed ID: 12084062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.