These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 526855)

  • 21. Subcortical waking and sleep during lateral hypothalamic "somnolence" in rats.
    Shoham S; Teitelbaum P
    Physiol Behav; 1982 Feb; 28(2):323-33. PubMed ID: 7079346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Validation of the cuff pedestal technique for rapid eye movement sleep (REMs) deprivation by electrophysiological recordings.
    Hilakivi I; Peder M; Elomaa E; Johansson G
    Physiol Behav; 1984 Jun; 32(6):945-7. PubMed ID: 6494310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The central responsiveness of the acute cerveau isolé rat.
    User P; Gottesmann C
    Brain Res Bull; 1982 Jan; 8(1):15-21. PubMed ID: 7055733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Study of cortical spindles during sleep in the rat.
    Terrier G; Gottesmann CL
    Brain Res Bull; 1978; 3(6):701-6. PubMed ID: 162576
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atropine effects on the intermediate stage and paradoxical sleep in rats.
    Arnaud C; Gauthier P; Gottesmann C
    Psychopharmacology (Berl); 1994 Nov; 116(3):304-8. PubMed ID: 7892420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Benzodiazepines promote the intermediate stage at the expense of paradoxical sleep in the rat.
    Gandolfo G; Scherschlicht R; Gottesmann C
    Pharmacol Biochem Behav; 1994 Dec; 49(4):921-7. PubMed ID: 7886108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain stem gigantocellular neurons: patterns of activity during behavior and sleep in the freely moving rat.
    Vertes RP
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):214-28. PubMed ID: 219157
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat.
    Portas CM; Bjorvatn B; Fagerland S; Grønli J; Mundal V; Sørensen E; Ursin R
    Neuroscience; 1998 Apr; 83(3):807-14. PubMed ID: 9483564
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ritanserin-induced changes in sleep-waking phases in rats.
    Kirov R; Moyanova S
    Acta Physiol Pharmacol Bulg; 1995; 21(4):87-92. PubMed ID: 8830880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuropeptide-S evoked arousal with electroencephalogram slow-wave compensatory drive in rats.
    Ahnaou A; Drinkenburg WH
    Neuropsychobiology; 2012 Jun; 65(4):195-205. PubMed ID: 22538299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A cortical EEG frequency with a REM-specific increase in amplitude.
    Campbell IG; Feinberg I
    J Neurophysiol; 1993 Apr; 69(4):1368-71. PubMed ID: 8492170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theta activity in local field potential of the ventral tegmental area in sleeping and waking rats.
    Orzeł-Gryglewska J; Matulewicz P; Jurkowlaniec E
    Behav Brain Res; 2014 May; 265():84-92. PubMed ID: 24569012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2009 Jun; 161(1):269-92. PubMed ID: 19285545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Changes in reactivity of rat visual system during wake-sleep cycle].
    Rallo JL
    C R Seances Soc Biol Fil; 1975; 169(1):178-84. PubMed ID: 126727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Triggering sleep slow waves by transcranial magnetic stimulation.
    Massimini M; Ferrarelli F; Esser SK; Riedner BA; Huber R; Murphy M; Peterson MJ; Tononi G
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8496-501. PubMed ID: 17483481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discharge and Role of Acetylcholine Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recording in Mice.
    Cissé Y; Toossi H; Ishibashi M; Mainville L; Leonard CS; Adamantidis A; Jones BE
    eNeuro; 2018; 5(4):. PubMed ID: 30225352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Changes in evoked responses of the cortex and in acoustic radiations caused by stimulation of the brachium of the inferior colliculus during the sleep-waking cycle].
    Dagnino N; Favale E; Leb C; Manfredi M
    Boll Soc Ital Biol Sper; 1964 Nov; 40(22):1434-7. PubMed ID: 5876867
    [No Abstract]   [Full Text] [Related]  

  • 38. Event-related potentials in humans as indices of access to stored information during sleep.
    Hamon JF; Gauthier P; Gottesmann C
    Acta Physiol Hung; 1994; 82(1):87-98. PubMed ID: 7976399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Changes in the cortical responses evoked by stimulation of acoustic radiations during the sleep-waking cycle].
    Dagnino N; Favale E; Loeb C; Manfredi M
    Boll Soc Ital Biol Sper; 1964 Nov; 40(22):1437-9. PubMed ID: 5876868
    [No Abstract]   [Full Text] [Related]  

  • 40. Induction of long-term potentiation leads to increased reliability of evoked neocortical spindles in vivo.
    Werk CM; Harbour VL; Chapman CA
    Neuroscience; 2005; 131(4):793-800. PubMed ID: 15749334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.