These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 5269227)

  • 1. Cooperative effects in models of steady-state transport across membranes. 3. Simulation of potassium ion transport in nerve.
    Hill TL; Chen Y
    Proc Natl Acad Sci U S A; 1970 Jul; 66(3):607-14. PubMed ID: 5269227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative effects in models of steady-state transport across membranes. I.
    Hill TL; Chen Y
    Proc Natl Acad Sci U S A; 1970 Apr; 65(4):1069-76. PubMed ID: 5266148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the theory of ion transport across the nerve membrane. V. Two models for the Cole-Moore K + hyperpolarization delay.
    Hill TL; Chen YD
    Biophys J; 1972 Aug; 12(8):960-76. PubMed ID: 5044584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proposed 1-f noise mechanism in nerve cell membranes.
    Lundström I; McQueen D
    J Theor Biol; 1974 Jun; 45(2):405-9. PubMed ID: 4844624
    [No Abstract]   [Full Text] [Related]  

  • 5. Cooperative effects in models of steady-state transport across membranes. II. Oscillating phase transition.
    Hill TL; Chen YD
    Proc Natl Acad Sci U S A; 1970 May; 66(1):189-96. PubMed ID: 5273896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.
    Mafé S; Pellicer J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):022901. PubMed ID: 15783362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the theory of ion transport across the nerve membrane. IV. Noise from the open-close kinetics of K + channels.
    Hill TL; Chen YD
    Biophys J; 1972 Aug; 12(8):948-59. PubMed ID: 5044583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Firing behaviour in stochastic nerve membrane models with different pore densities.
    Skaugen E
    Acta Physiol Scand; 1980 Jan; 108(1):49-60. PubMed ID: 6246718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of photoinduced charge-separated state of donor-acceptor-linked molecules for regulation of cell membrane potential and ion transport.
    Numata T; Murakami T; Kawashima F; Morone N; Heuser JE; Takano Y; Ohkubo K; Fukuzumi S; Mori Y; Imahori H
    J Am Chem Soc; 2012 Apr; 134(14):6092-5. PubMed ID: 22449129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a molecular theory of the nerve membrane: the sufficiency of a single-ion queue.
    Gillespie CJ
    J Theor Biol; 1976 May; 58(2):477-98. PubMed ID: 940336
    [No Abstract]   [Full Text] [Related]  

  • 11. The kinetic behavior of the potassium channel in nerve membrane: a single-ion electrodiffusion process.
    Hägglund JV; Sandblom JP
    TIT J Life Sci; 1972; 2(4):107-19. PubMed ID: 4668502
    [No Abstract]   [Full Text] [Related]  

  • 12. Letter: Flicker noise and structural changes in nerve membrane.
    Holden AV
    J Theor Biol; 1976 Mar; 57(1):243-6. PubMed ID: 957657
    [No Abstract]   [Full Text] [Related]  

  • 13. Complementary variational principles for the steady-state finite cable model of nerve membranes.
    Anderson N; Arthurs AM
    Bull Math Biol; 1978; 40(6):735-42. PubMed ID: 743568
    [No Abstract]   [Full Text] [Related]  

  • 14. [Computer modelling of the behavior of nerve fiber membranes under rhythmic stimulation].
    Berkinblit MB; Dudziavichus I; Kovalev SA; Fomin SV; Kholopov AV
    Biofizika; 1970; 15(1):147-55. PubMed ID: 4318685
    [No Abstract]   [Full Text] [Related]  

  • 15. Simulation of the ionic mechanisms of molluscan neurons under pentylenetetrazol-induced effects.
    Pongrácz F; Szente M
    Acta Physiol Acad Sci Hung; 1979; 53(3):327-36. PubMed ID: 543400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state voltages, ion fluxes, and volume regulation in syncytial tissues.
    Mathias RT
    Biophys J; 1985 Sep; 48(3):435-48. PubMed ID: 2412605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental comparison between the continuum and single jump descriptions of nonactin-mediated potassium transport through black lipid membranes.
    van Dijk C; de Levie R
    Biophys J; 1985 Jul; 48(1):125-36. PubMed ID: 3839420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The "anomalous" relationship between the concentration of potassium in the medium and the membrane potential of muscle fibers with a decreased intracellular potassium concentration. II. Rate of forward and reverse K42 transport through muscle fiber membranes in saccharose-sulfate solutions with potassium concentrations of 2.5 and 75 mM].
    Vereninov AA; Vinogradova TA; Toropova FV
    Tsitologiia; 1976 Jan; 18(1):66-73. PubMed ID: 941275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady state contribution of the Na, K-pump to the membrane potential in identified neurons of a terrestrial snail, Helix pomatia.
    Christoffersen GR
    Acta Physiol Scand; 1972 Dec; 86(4):498-514. PubMed ID: 4344877
    [No Abstract]   [Full Text] [Related]  

  • 20. Cooperative effects in models of steady-state transport across membranes. IV. One-site, two-site, and multisite models.
    Hill TL; Chen YD
    Biophys J; 1971 Sep; 11(9):685-710. PubMed ID: 5132496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.