These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 5271)
21. Distribution of 2-methyl-4-chlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid in male rats: evidence for the involvement of the central nervous system in their toxicity. Elo HA; Ylitalo P Toxicol Appl Pharmacol; 1979 Dec; 51(3):439-46. PubMed ID: 538756 [No Abstract] [Full Text] [Related]
22. [Chemical structure and toxicodynamic properties of phenoxycarboxylic acid derivatives. III. The course of absorption into the blood and the measurement of the urinary excretion of phenoxyacetic and phenoxypropionic acid derivatives]. Seńczuk W; Pogorzelska H Rocz Panstw Zakl Hig; 1981; 32(5-6):419-26. PubMed ID: 7344054 [No Abstract] [Full Text] [Related]
23. Distribution and elimination of 2-methyl-4-chlorophenoxyacetic acid (MCPA) in male rats. Elo H Acta Pharmacol Toxicol (Copenh); 1976 Jul; 39(1):58-64. PubMed ID: 988972 [No Abstract] [Full Text] [Related]
24. Rapid Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Cupriavidus gilardii T-1. Wu X; Wang W; Liu J; Pan D; Tu X; Lv P; Wang Y; Cao H; Wang Y; Hua R J Agric Food Chem; 2017 May; 65(18):3711-3720. PubMed ID: 28434228 [TBL] [Abstract][Full Text] [Related]
25. MCPA residues in developing forest ecosystem after aerial spraying. Eronen L; Julkunen R; Saarelainen A Bull Environ Contam Toxicol; 1979 Apr; 21(6):791-8. PubMed ID: 37950 [No Abstract] [Full Text] [Related]
26. Evidence for the importance of litter as a co-substrate for MCPA dissipation in an agricultural soil. Saleh O; Pagel H; Enowashu E; Devers M; Martin-Laurent F; Streck T; Kandeler E; Poll C Environ Sci Pollut Res Int; 2016 Mar; 23(5):4164-75. PubMed ID: 25943518 [TBL] [Abstract][Full Text] [Related]
27. The efficient persistence and migration of Cupriavidus gilardii T1 contribute to the removal of MCPA in laboratory and field soils. Pan D; Xu Y; Ni Y; Zhang H; Hua R; Wu X Environ Pollut; 2022 Jul; 304():119220. PubMed ID: 35358633 [TBL] [Abstract][Full Text] [Related]
28. Degradation of 4-chloro-2-methylphenoxyacetic acid in top- and subsoil is quantitatively linked to the class III tfdA gene. Baelum J; Henriksen T; Hansen HC; Jacobsen CS Appl Environ Microbiol; 2006 Feb; 72(2):1476-86. PubMed ID: 16461702 [TBL] [Abstract][Full Text] [Related]
29. Novel insight into the genetic context of the cadAB genes from a 4-chloro-2-methylphenoxyacetic acid-degrading Sphingomonas. Nielsen TK; Xu Z; Gözdereliler E; Aamand J; Hansen LH; Sørensen SR PLoS One; 2013; 8(12):e83346. PubMed ID: 24391756 [TBL] [Abstract][Full Text] [Related]
30. Transcription dynamics of the functional tfdA gene during MCPA herbicide degradation by Cupriavidus necator AEO106 (pRO101) in agricultural soil. Nicolaisen MH; Baelum J; Jacobsen CS; Sørensen J Environ Microbiol; 2008 Mar; 10(3):571-9. PubMed ID: 18190516 [TBL] [Abstract][Full Text] [Related]
31. Genetic analysis of phenoxyalkanoic acid degradation in Sphingomonas herbicidovorans MH. Müller TA; Byrde SM; Werlen C; van der Meer JR; Kohler HP Appl Environ Microbiol; 2004 Oct; 70(10):6066-75. PubMed ID: 15466552 [TBL] [Abstract][Full Text] [Related]
32. Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation. Ledger T; Pieper DH; González B Appl Environ Microbiol; 2006 Apr; 72(4):2783-92. PubMed ID: 16597983 [TBL] [Abstract][Full Text] [Related]
33. Mutation analysis of the different tfd genes for degradation of chloroaromatic compounds in Ralstonia eutropha JMP134. Laemmli C; Werlen C; van der Meer JR Arch Microbiol; 2004 Feb; 181(2):112-21. PubMed ID: 14676989 [TBL] [Abstract][Full Text] [Related]
34. 2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils. Boivin A; Amellal S; Schiavon M; van Genuchten MT Environ Pollut; 2005 Nov; 138(1):92-9. PubMed ID: 16023914 [TBL] [Abstract][Full Text] [Related]
35. Modeling of phenoxy acid herbicide mineralization and growth of microbial degraders in 15 soils monitored by quantitative real-time PCR of the functional tfdA gene. Bælum J; Prestat E; David MM; Strobel BW; Jacobsen CS Appl Environ Microbiol; 2012 Aug; 78(15):5305-12. PubMed ID: 22635998 [TBL] [Abstract][Full Text] [Related]
36. Degradation of chlorophenoxy herbicides by coupled Fenton and biological oxidation. Sanchis S; Polo AM; Tobajas M; Rodriguez JJ; Mohedano AF Chemosphere; 2013 Sep; 93(1):115-22. PubMed ID: 23726010 [TBL] [Abstract][Full Text] [Related]
37. Increase in the penetration of tracer compounds into the rat brain during 2-methyl-4-chlorophenoxyacetic acid (MCPA) intoxication. Elo HA; Ylitalo P; Kyöttilä J; Hervonen H Acta Pharmacol Toxicol (Copenh); 1982 Feb; 50(2):104-7. PubMed ID: 6978592 [TBL] [Abstract][Full Text] [Related]
38. The influence of conformational factors on the metabolic conjugation of aryloxyacetates. van de Waterbeemd H; Testa B; Caldwell J J Pharm Pharmacol; 1986 Jan; 38(1):14-8. PubMed ID: 2869120 [TBL] [Abstract][Full Text] [Related]
39. Hydrolysis of MCPA esters and the persistence of MCPA in Saskatchewan soils. Smith AE; Hayden BJ Bull Environ Contam Toxicol; 1980 Sep; 25(3):369-73. PubMed ID: 7426786 [No Abstract] [Full Text] [Related]
40. Spatial variation in 2-methyl-4-chlorophenoxyacetic acid mineralization and sorption in a sandy soil at field level. Fredslund L; Vinther FP; Brinch UC; Elsgaard L; Rosenberg P; Jacobsen CS J Environ Qual; 2008; 37(5):1918-28. PubMed ID: 18689753 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]