These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 5271)

  • 41. A study of the degradation of phenoxyacid herbicides at different sites in a limestone aquifer.
    Harrison I; Leader RU; Higgo JJ; Williams GM
    Chemosphere; 1998 Mar; 36(6):1211-32. PubMed ID: 9493323
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Consumers of 4-chloro-2-methylphenoxyacetic acid from agricultural soil and drilosphere harbor cadA, r/sdpA, and tfdA-like gene encoding oxygenases.
    Liu YJ; Liu SJ; Drake HL; Horn MA
    FEMS Microbiol Ecol; 2013 Oct; 86(1):114-29. PubMed ID: 23646893
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Variation of MCPA, metribuzine, methyltriazine-amine and glyphosate degradation, sorption, mineralization and leaching in different soil horizons.
    Jacobsen CS; van der Keur P; Iversen BV; Rosenberg P; Barlebo HC; Torp S; Vosgerau H; Juhler RK; Ernstsen V; Rasmussen J; Brinch UC; Jacobsen OH
    Environ Pollut; 2008 Dec; 156(3):794-802. PubMed ID: 18639963
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Distribution and incorporation mode of the herbicide MCPA in soil derived organo-clay complexes.
    Riefer P; Klausmeyer T; Schmidt B; Schäffer A; Schwarzbauer J
    J Environ Sci Health B; 2017 Aug; 52(8):584-599. PubMed ID: 28494222
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Succession of bacterial and fungal 4-chloro-2-methylphenoxyacetic acid degraders at the soil-litter interface.
    Ditterich F; Poll C; Pagel H; Babin D; Smalla K; Horn MA; Streck T; Kandeler E
    FEMS Microbiol Ecol; 2013 Oct; 86(1):85-100. PubMed ID: 23560662
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Promoting degradation of 2,4-dichlorophenoxyacetic acid with fermentative effluents from hydrogen-producing reactor.
    Yang Z; Shi X; Dai M; Wang L; Xu X; Guo R
    Chemosphere; 2018 Jun; 201():859-863. PubMed ID: 29567469
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of environmental factors on 2,4-dichlorophenoxyacetic acid degradation by Pseudomonas cepacia isolated from peat.
    Greer CW; Hawari J; Samson R
    Arch Microbiol; 1990; 154(4):317-22. PubMed ID: 2244784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Protozoan predation in soil slurries compromises determination of contaminant mineralization potential.
    Badawi N; Johnsen AR; Brandt KK; Sørensen J; Aamand J
    Environ Pollut; 2012 Nov; 170():32-8. PubMed ID: 22763328
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Study of MCPA and MCPP herbicides mobility in soils from North-West Croatia as affected by presence of fertilizers.
    Horvat AJ; Kastelan-Macan M; Petrović M; Barbarić Z
    J Environ Sci Health B; 2003 May; 38(3):305-16. PubMed ID: 12716048
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mineralization of aged atrazine, terbuthylazine, 2,4-D, and mecoprop in soil and aquifer sediment.
    Johannesen H; Aamand J
    Environ Toxicol Chem; 2003 Apr; 22(4):722-9. PubMed ID: 12685704
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detection and identification of substituted phenols as intermediates of concurrent bacterial degradation of the phenoxy herbicides MCPP and 2,4-D.
    Oh KH; Tuovinen OH
    FEMS Microbiol Lett; 1991 Apr; 63(2-3):141-6. PubMed ID: 2060758
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolism of 2-chloro-4-methylphenoxyacetate by Alcaligenes eutrophus JMP 134.
    Pieper DH; Stadler-Fritzsche K; Engesser KH; Knackmuss HJ
    Arch Microbiol; 1993; 160(3):169-78. PubMed ID: 8215795
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Clinical features and management of poisoning with 2,4-D and mecoprop.
    Wells WD; Wright N; Yeoman WB
    Clin Toxicol; 1981 Mar; 18(3):273-6. PubMed ID: 7237959
    [No Abstract]   [Full Text] [Related]  

  • 54. [Cooxidation of phenoxyalkane acids by microbial cultures].
    Skriabin GK; Golovleva LA; Solov'eva TF
    Dokl Akad Nauk SSSR; 1974 Mar; 215(2):454-6. PubMed ID: 4837336
    [No Abstract]   [Full Text] [Related]  

  • 55. The effect of structure and a secondary carbon source on the microbial degradation of chlorophenoxy acids.
    Evangelista S; Cooper DG; Yargeau V
    Chemosphere; 2010 May; 79(11):1084-8. PubMed ID: 20392474
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gene-Centric Model Approaches for Accurate Prediction of Pesticide Biodegradation in Soils.
    Chavez Rodriguez L; Ingalls B; Schwarz E; Streck T; Uksa M; Pagel H
    Environ Sci Technol; 2020 Nov; 54(21):13638-13650. PubMed ID: 33064475
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increase in the acute toxicity and brain concentrations of chlorophenoxyacetic acids by probenecid in rats.
    Ylitalo P; Närhi U; Elo HA
    Gen Pharmacol; 1990; 21(5):811-4. PubMed ID: 2276599
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acute and subchronic toxicity of 2-methyl-4-chlorophenoxyacetic acid (MCPA) in male rat. I. Light microscopy and tissue concentrations of MCPA.
    Hattula ML; Elo H; Reunanen H; Arstila AU
    Bull Environ Contam Toxicol; 1977 Aug; 18(2):152-8. PubMed ID: 890150
    [No Abstract]   [Full Text] [Related]  

  • 59. Survey of organochlorine-tolerant culturable mycota from contaminated soils, and 2,4-D removal ability of Penicillium species in synthetic wastewater.
    Magnoli K; Carranza CS; Aluffi ME; Benito N; Magnoli CE; Barberis CL
    Fungal Biol; 2023; 127(1-2):891-899. PubMed ID: 36746561
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adsorption and desorption processes of MCPA in Polish mineral soils.
    Paszko T
    J Environ Sci Health B; 2011; 46(7):569-80. PubMed ID: 21722084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.