These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 5275368)

  • 61. Asymmetric methyl groups, and the mechanism of malate synthase.
    Cornforth JW; Redmond JW; Eggerer H; Buckel W; Gutschow C
    Nature; 1969 Mar; 221(5187):1212-3. PubMed ID: 5773833
    [No Abstract]   [Full Text] [Related]  

  • 62. The use of (E)- and (Z)-phosphoenol-3-fluoropyruvate as mechanistic probes reveals significant differences between the active sites of KDO8P and DAHP synthases.
    Furdui CM; Sau AK; Yaniv O; Belakhov V; Woodard RW; Baasov T; Anderson KS
    Biochemistry; 2005 May; 44(19):7326-35. PubMed ID: 15882071
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase.
    de Ávila MB; de Azevedo WF
    Chem Biol Drug Des; 2018 Aug; 92(2):1468-1474. PubMed ID: 29676519
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Characterization and properties of two dehydroquinate hydro-lyases in higher plants].
    Boudet AM; Lécussan R; Boudet A
    Planta; 1975 Jan; 124(1):67-75. PubMed ID: 24435175
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Inhibitors of types I and II dehydroquinase.
    Le Sann C; Gower MA; Abell AD
    Mini Rev Med Chem; 2004 Sep; 4(7):747-56. PubMed ID: 15379642
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A new nicotinamide-adenine dinucleotide-dependent hydroaromatic dehydrogenase of Lactobacillus plantarum and its role in formation of (minus)t-3,t-4-dihydroxycyclohexane-c-1-carboxylate.
    Whiting GC; Coggins RA
    Biochem J; 1974 Jul; 141(1):35-42. PubMed ID: 4375976
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Enzymic synthesis of 3-[3- 13C]dehydroquinic acid.
    Frederickson M; Parker EJ; Coggins JR; Abell C
    Org Biomol Chem; 2003 Oct; 1(19):3271-3. PubMed ID: 14584789
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The oxidation of D-quinate and related acids by Acetomonas oxydans.
    Whiting GC; Coggins RA
    Biochem J; 1967 Jan; 102(1):283-93. PubMed ID: 6030289
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Stereochemistry of the enzymatic dehydration of butyryl-CoA].
    Bücklers L; Umani-Ronchi A; Rétey J; Arigoni D
    Experientia; 1970 Sep; 26(9):931-3. PubMed ID: 5529497
    [No Abstract]   [Full Text] [Related]  

  • 70. The stereochemistry of the hydrogen elimination in the biological conversion of cholest-7-en-3-beta-ol into cholesterol.
    Akhtar M; Marsh S
    Biochem J; 1967 Feb; 102(2):462-7. PubMed ID: 6029605
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The Shikimate pathway. 3. The stereochemical course of the L-phenylalanine ammonia lyase reaction.
    Ife R; Haslam E
    J Chem Soc Perkin 1; 1971; 16():2818-21. PubMed ID: 5168488
    [No Abstract]   [Full Text] [Related]  

  • 72. Some ring-opening reactions of a diepoxide derived from (-)-quinic acid.
    Mercier D; Leboul J; Cléophax J; Gero SD
    Carbohydr Res; 1971 Dec; 20(2):299-304. PubMed ID: 5152104
    [No Abstract]   [Full Text] [Related]  

  • 73. Mechanism of the anthranilate synthetase reaction. Evidence against an intramolecular hydrogen transfer.
    Floss HG; Onderka DK; Zalkin H
    Biochim Biophys Acta; 1970 Jun; 206(3):449-56. PubMed ID: 4918125
    [No Abstract]   [Full Text] [Related]  

  • 74. Initial and equilibrium 18O, 14C, 3H, and 2H exchange rates as probes of the fumarase reaction mechanism.
    Hansen JN; Dinovo EC; Boyer PD
    J Biol Chem; 1969 Nov; 244(22):6270-9. PubMed ID: 5350961
    [No Abstract]   [Full Text] [Related]  

  • 75. Stereochemistry of the dTDP-glucose oxidoreductase reaction.
    Snipes CE; Brillinger GU; Sellers L; Mascaro L; Floss HG
    J Biol Chem; 1977 Nov; 252(22):8113-7. PubMed ID: 334773
    [TBL] [Abstract][Full Text] [Related]  

  • 76. THE SYNTHESIS OF 3-DEOXY-D-ARABINO-HEPTULOSONIC ACID 7-PHOSPHATE.
    SPRINSON DB; ROTHSCHILD J; SPRECHER M
    J Biol Chem; 1963 Oct; 238():3170-5. PubMed ID: 14085357
    [No Abstract]   [Full Text] [Related]  

  • 77. Repression and inhibition of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase by parafluorophenylalanine in Escherichia coli.
    Previc E; Binkley S
    Biochem Biophys Res Commun; 1964 Jun; 16(2):162-6. PubMed ID: 5332846
    [No Abstract]   [Full Text] [Related]  

  • 78. Stereospecific synthesis of optically pure quinic acid and shikimic acid from D-arabinose.
    Bestmann HJ; Heid HA
    Angew Chem Int Ed Engl; 1971 May; 10(5):336-7. PubMed ID: 5005190
    [No Abstract]   [Full Text] [Related]  

  • 79. Synthesis and separation of tritium-labeled intermediates of the shikimate pathway.
    Christopherson RI; Morrison JF
    Arch Biochem Biophys; 1983 Feb; 220(2):444-50. PubMed ID: 6824333
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Colorimetric assay of shikimic acid against quinic acid.
    Mossor T; Schramm RW
    Anal Biochem; 1972 May; 47(1):39-45. PubMed ID: 5031126
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.