These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 527581)
1. Effect of long-term training and acute physical exercise on red cell 2,3-diphosphoglycerate. Remes K; Vuopio P; Härkönen M Eur J Appl Physiol Occup Physiol; 1979 Nov; 42(3):199-207. PubMed ID: 527581 [TBL] [Abstract][Full Text] [Related]
2. Effect of short-term strenuous exercise on erythrocyte 2,3-diphosphoglycerate in untrained men: a time-course study. Odje OE; Ramsey JM Eur J Appl Physiol Occup Physiol; 1995; 71(1):53-7. PubMed ID: 7556132 [TBL] [Abstract][Full Text] [Related]
3. Exercise intensity and erythrocyte 2,3-diphosphoglycerate concentration. Hsieh SS; Freedson PS; Mroz MC; Stewart PM Med Sci Sports Exerc; 1986 Feb; 18(1):82-6. PubMed ID: 3959869 [TBL] [Abstract][Full Text] [Related]
4. Red cell 2,3-DPG, ATP, and mean cell volume in highly trained athletes. Effect of long-term submaximal exercise. Brodthagen UA; Hansen KN; Knudsen JB; Jordal R; Kristensen O; Paulev PE Eur J Appl Physiol Occup Physiol; 1985; 53(4):334-8. PubMed ID: 4039260 [TBL] [Abstract][Full Text] [Related]
5. Effects of training on erythrocyte 2,3-diphosphoglycerate in normal men. Hespel P; Lijnen P; Fagard R; Van Hoof R; Goossens W; Amery A Eur J Appl Physiol Occup Physiol; 1988; 57(4):456-61. PubMed ID: 3396560 [TBL] [Abstract][Full Text] [Related]
6. Regulation of red cell 2,3-DPG and Hb-O2-affinity during acute exercise. Mairbäurl H; Schobersberger W; Hasibeder W; Schwaberger G; Gaesser G; Tanaka KR Eur J Appl Physiol Occup Physiol; 1986; 55(2):174-80. PubMed ID: 3699004 [TBL] [Abstract][Full Text] [Related]
7. Phosphate loading and the effects on VO2max in trained cyclists. Stewart I; McNaughton L; Davies P; Tristram S Res Q Exerc Sport; 1990 Mar; 61(1):80-4. PubMed ID: 2091171 [TBL] [Abstract][Full Text] [Related]
8. Changes in erythrocyte 2,3 diphosphoglycerate in women following short term maximal exercise. Bonner HW; Tate CA; Buffington CK Eur J Appl Physiol Occup Physiol; 1975 Dec; 34(4):227-32. PubMed ID: 234 [TBL] [Abstract][Full Text] [Related]
9. Effect of high intensity interval training on 2,3-diphosphoglycerate at rest and after maximal exercise. Katz A; Sharp RL; King DS; Costill DL; Fink WJ Eur J Appl Physiol Occup Physiol; 1984; 52(3):331-5. PubMed ID: 6539689 [TBL] [Abstract][Full Text] [Related]
10. Changes in the concentrations of plasma and erythrocyte magnesium and of 2,3-diphosphoglycerate during a period of aerobic training. Resina A; Brettoni M; Gatteschi L; Galvan P; Orsi F; Rubenni MG Eur J Appl Physiol Occup Physiol; 1994; 68(5):390-4. PubMed ID: 8076617 [TBL] [Abstract][Full Text] [Related]
13. Physiological variations in levels of 2,3-diphosphoglycerate in horse erythrocytes. Lewis IM; McLan JG Res Vet Sci; 1975 Mar; 18(2):186-9. PubMed ID: 1129537 [TBL] [Abstract][Full Text] [Related]
14. Effects of phosphate loading on 2,3-diphosphoglycerate and maximal oxygen uptake. Cade R; Conte M; Zauner C; Mars D; Peterson J; Lunne D; Hommen N; Packer D Med Sci Sports Exerc; 1984 Jun; 16(3):263-8. PubMed ID: 6748924 [TBL] [Abstract][Full Text] [Related]
15. In vivo regeneration of red cell 2,3-diphosphoglycerate following transfusion of DPG-depleted AS-1, AS-3 and CPDA-1 red cells. Heaton A; Keegan T; Holme S Br J Haematol; 1989 Jan; 71(1):131-6. PubMed ID: 2492818 [TBL] [Abstract][Full Text] [Related]
16. The 2,3-DPG levels of human red blood cells during an incremental exercise test: relationship to the blood acid-base balance. Spodaryk K; Zoladz JA Physiol Res; 1998; 47(1):17-22. PubMed ID: 9708696 [TBL] [Abstract][Full Text] [Related]
17. Changes in 2,3-Diphosphoglycerate (2,3-DPG) after exercise. Meen HD; Holter PH; Refsum HE Eur J Appl Physiol Occup Physiol; 1981; 46(2):177-84. PubMed ID: 7194794 [TBL] [Abstract][Full Text] [Related]
18. Red cell 2,3-diphosphoglycerate and hemoglobin--oxygen affinity during normal pregnancy. Madsen H; Ditzel J Acta Obstet Gynecol Scand; 1984; 63(5):399-402. PubMed ID: 6496042 [TBL] [Abstract][Full Text] [Related]
19. Red cell oxygen transport before and after short-term maximal swimming in dependence on training status. Hasibeder W; Schobersberger W; Mairbäurl H Int J Sports Med; 1987 Apr; 8(2):105-8. PubMed ID: 3596874 [TBL] [Abstract][Full Text] [Related]
20. Training-dependent changes of red cell density and erythrocytic oxygen transport. Mairbäurl H; Humpeler E; Schwaberger G; Pessenhofer H J Appl Physiol Respir Environ Exerc Physiol; 1983 Nov; 55(5):1403-7. PubMed ID: 6643179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]