These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 527590)
1. The binding of 8-anilinonaphthalene-1-sulphonate to a fixed concentration of unenergised and succinate-energised submitochondrial particles. Gains N; Dawson AP Eur J Biochem; 1979 Dec; 102(2):483-7. PubMed ID: 527590 [TBL] [Abstract][Full Text] [Related]
2. A kinetic analysis of the changes in fluorescence on the interaction of 8-anilinonaphthalene-1-sulphonate with submitochondrial particles. Gains N; Dawson AP Biochem J; 1976 Aug; 158(2):295-305. PubMed ID: 985430 [TBL] [Abstract][Full Text] [Related]
3. On the nature of the energised state of submitochondrial particles; investigations with N-aryl naphthalene sulphonate probes. Ferguson SJ; Lloyd WJ; Radda GK Biochim Biophys Acta; 1976 Feb; 423(2):174-88. PubMed ID: 129165 [TBL] [Abstract][Full Text] [Related]
4. Evidence against protein-induced 'internal pressure' in biological membranes. Partition of 8-anilinonaphthalene-1-sulphonate into Triton X-100 micelles and submitochondrial particles. Gains N; Dawson AP Biochem J; 1982 Dec; 207(3):567-72. PubMed ID: 7165709 [TBL] [Abstract][Full Text] [Related]
6. Relationships between the effects of redox potential, alpha-thenoyltrifluoroacetone and malonate on O(2) and H2O2 generation by submitochondrial particles in the presence of succinate and antimycin. Ksenzenko M; Konstantinov AA; Khomutov GB; Tikhonov AN; Ruuge EK FEBS Lett; 1984 Sep; 175(1):105-8. PubMed ID: 6090204 [TBL] [Abstract][Full Text] [Related]
7. The kinetics of quinone pools in electron transport. Ragan CI; Cottingham IR Biochim Biophys Acta; 1985 Apr; 811(1):13-31. PubMed ID: 3986195 [No Abstract] [Full Text] [Related]
8. [Pentachlorophenol inhibition of succinate oxidation by the respiratory chain in submitochondrial particles from the bovine heart]. Afanas'eva EV; Kostyrko VA Biokhimiia; 1986 May; 51(5):823-9. PubMed ID: 3708023 [TBL] [Abstract][Full Text] [Related]
9. Evidence against phosphorylation of ADP by oleoyl phosphate catalyzed by submitochondrial particles. Sharma M; Wang JH Biochem Biophys Res Commun; 1978 Sep; 84(1):144-50. PubMed ID: 728121 [No Abstract] [Full Text] [Related]
10. Extraction and reincorporation of ubiquinone in submitochondrial particles. Ernster L; Glaser E; Norling B Methods Enzymol; 1978; 53():573-9. PubMed ID: 713856 [No Abstract] [Full Text] [Related]
11. The use of aurovertin to determine the F1 content of submitochondrial particles and the ATPase complex. Berden JA; Verschoor GJ Biochim Biophys Acta; 1978 Nov; 504(2):278-87. PubMed ID: 152643 [TBL] [Abstract][Full Text] [Related]
12. The adenosine triphosphatase-inhibitor content of bovine heart submitochondrial particles. Influence of the inhibitor on adenosine triphosphate-dependent reactions. Ferguson SJ; Harris DA; Radda GK Biochem J; 1977 Feb; 162(2):351-7. PubMed ID: 139891 [TBL] [Abstract][Full Text] [Related]
13. Partial uncoupling, or inhibition of electron transport rate, have equivalent effects on the relationship between the rate of ATP synthesis and proton-motive force in submitochondrial particles. Catia Sorgato M; Lippe G; Seren S; Ferguson SJ FEBS Lett; 1985 Feb; 181(2):323-7. PubMed ID: 2982663 [TBL] [Abstract][Full Text] [Related]
14. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV; Scaduto RC Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638 [TBL] [Abstract][Full Text] [Related]
15. The electrogenic nature of ADP/ATP transport in inside-out submitochondrial particles. Villiers C; Michejda JW; Block M; Lauquin GJ; Vignais PV Biochim Biophys Acta; 1979 Apr; 546(1):157-70. PubMed ID: 36139 [No Abstract] [Full Text] [Related]
16. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles. Scholes TA; Hinkle PC Biochemistry; 1984 Jul; 23(14):3341-5. PubMed ID: 6087893 [TBL] [Abstract][Full Text] [Related]
17. Does the energy state of mitochondria influence the surface potential of the inner mitochondrial membrane? A critical appraisal. Wojtczak L; NaĆecz MJ; Famulski KS; Dygas A; Szewczyk A Acta Biochim Pol; 1987; 34(3):299-318. PubMed ID: 2825455 [TBL] [Abstract][Full Text] [Related]
18. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential. Sorgato MC; Ferguson SJ; Kell DB; John P Biochem J; 1978 Jul; 174(1):237-56. PubMed ID: 212021 [TBL] [Abstract][Full Text] [Related]
19. Is complex II involved in the inhibition of mitochondrial respiration by N-methyl-4-phenylpyridinium cation (MMP+) and N-methyl-beta-carbolines? Krueger MJ; Tan AK; Ackrell BA; Singer TP Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):673-6. PubMed ID: 8489493 [TBL] [Abstract][Full Text] [Related]
20. A Ca2+-binding lipoprotein from submitochondrial particles of rat skeletal muscle or bovine heart. Yamada EW; Huzel NJ; Burgess JW J Biol Chem; 1982 Feb; 257(4):2087-91. PubMed ID: 6460034 [No Abstract] [Full Text] [Related] [Next] [New Search]