BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 527592)

  • 1. Transport of D-lactate in perfused rat liver.
    Schwab AJ; Bracht A; Scholz R
    Eur J Biochem; 1979 Dec; 102(2):537-47. PubMed ID: 527592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells.
    Wang X; Poole RC; Halestrap AP; Levi AJ
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):249-58. PubMed ID: 8439293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport of inorganic anions in perfused rat liver.
    Bracht A; Bracht AK; Schwab AJ; Scholz R
    Eur J Biochem; 1981 Mar; 114(3):471-9. PubMed ID: 7238498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of hepatic nitrogen metabolism and glutathione release by cell volume regulatory mechanisms.
    Hüssinger D; Lang F; Bauers K; Gerok W
    Eur J Biochem; 1990 Nov; 193(3):891-8. PubMed ID: 2249700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L(+)-lactate transport in perfused rat skeletal muscle: kinetic characteristics and sensitivity to pH and transport inhibitors.
    Watt PW; MacLennan PA; Hundal HS; Kuret CM; Rennie MJ
    Biochim Biophys Acta; 1988 Oct; 944(2):213-22. PubMed ID: 2846055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible and irreversible inhibition, by stilbenedisulphonates, of lactate transport into rat erythrocytes. Identification of some new high-affinity inhibitors.
    Poole RC; Halestrap AP
    Biochem J; 1991 Apr; 275 ( Pt 2)(Pt 2):307-12. PubMed ID: 2025218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactate-proton cotransport in rabbit corneal epithelium.
    Bonanno JA
    Curr Eye Res; 1990 Jul; 9(7):707-12. PubMed ID: 2170077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The specificity and metabolic implications of the inhibition of pyruvate transport in isolated mitochondria and intact tissue preparations by alpha-Cyano-4-hydroxycinnamate and related compounds.
    Halestrap AP; Denton RM
    Biochem J; 1975 Apr; 148(1):97-106. PubMed ID: 1171687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A basolateral lactate/H+ co-transporter in Madin-Darby Canine Kidney (MDCK) cells.
    Rosenberg SO; Fadil T; Schuster VL
    Biochem J; 1993 Jan; 289 ( Pt 1)(Pt 1):263-8. PubMed ID: 8424765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactate transport in skeletal muscle cells: uptake in L6 myoblasts.
    Beaudry M; Duvallet A; Thieulart L; el Abida K; Rieu M
    Acta Physiol Scand; 1991 Mar; 141(3):379-81. PubMed ID: 1858508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes.
    Edlund GL; Halestrap AP
    Biochem J; 1988 Jan; 249(1):117-26. PubMed ID: 3342001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate.
    Halestrap AP; Denton RM
    Biochem J; 1974 Feb; 138(2):313-6. PubMed ID: 4822737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The carbon dioxide anion radical adduct in the perfused rat liver: relationship to halocarbon-induced toxicity.
    LaCagnin LB; Connor HD; Mason RP; Thurman RG
    Mol Pharmacol; 1988 Mar; 33(3):351-7. PubMed ID: 2832723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane polypeptide in rabbit erythrocytes associated with the inhibition of L-lactate transport by a synthetic anhydride of lactic acid.
    Donovan JA; Jennings ML
    Biochemistry; 1985 Jan; 24(3):561-4. PubMed ID: 2986679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depolarization-induced alkalinization in proximal tubules. II. Effects of lactate and SITS.
    Siebens AW; Boron WF
    Am J Physiol; 1989 Feb; 256(2 Pt 2):F354-65. PubMed ID: 2916667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NH4+ metabolism and the intracellular pH in isolated perfused rat liver.
    Zange J; Gronczewski J; Jans AW
    Biochem J; 1993 Aug; 293 ( Pt 3)(Pt 3):667-73. PubMed ID: 8394691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier.
    Halestrap AP
    Biochem J; 1976 May; 156(2):193-207. PubMed ID: 942406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of glycerol uptake by the perfused rat liver. Membrane transport, phosphorylation and effect on NAD redox level.
    Sestoft L; Fleron P
    Biochim Biophys Acta; 1975 Feb; 375(3):462-71. PubMed ID: 164217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter.
    Cranmer SL; Conant AR; Gutteridge WE; Halestrap AP
    J Biol Chem; 1995 Jun; 270(25):15045-52. PubMed ID: 7797486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of bicarbonate in biliary excretion of diisothiocyanostilbene disulfonate.
    Anwer MS; Nolan K; Hardison WG
    Am J Physiol; 1988 Dec; 255(6 Pt 1):G713-22. PubMed ID: 2849312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.